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1 IntroductionIn the age of the Internet and inexpensive computing power, society has developed an insatiable appetitefor information, all kinds of information for many new and often exciting uses. Most actions in daily lifeare recorded on some computer somewhere. That information in turn is often shared, exchanged, and sold.Many people may not care that the local grocer keeps track of which items they purchase, but sharedinformation can be quite sensitive or damaging to individuals and organizations. Improper disclosure ofmedical information, �nancial information or matters of national security can have alarming rami�cations,and many abuses have been cited [2, 23]. The objective is to release information freely but to do so in a waythat the identity of any individual contained in the data cannot be recognized. In this way, information canbe shared freely and used for many new purposes.Shockingly, there remains a common incorrect belief that if the data looks anonymous, it is anonymous.Data holders, including government agencies, often remove all explicit identi�ers, such as name, address,and phone number, from data so that other information in the data can be shared, incorrectly believingthat the identities of individuals cannot be determined. On the contrary, de-identifying data provides noguarantee of anonymity [18]. Released information often contains other data, such as birth date, gender,and ZIP code, that in combination can be linked to publicly available information to re-identify individuals.Most municipalities sell population registers that include the identities of individuals along with basic demo-graphics; examples include local census data, voter lists, city directories, and information from motor vehicleagencies, tax assessors, and real estate agencies. For example, an electronic version of a city's voter list waspurchased for twenty dollars and used to show the ease of re-identifying medical records [18]. In addition tonames and addresses, the voter list included the birth dates and genders of 54,805 voters. Of these, 12% hadunique birth dates, 29% were unique with respect to birth date and gender, 69% with respect to birth dateand a 5-digit ZIP code, and, 97% were identi�able with just the full postal code and birth date [18]. Theseresults reveal how uniquely identifying combinations of basic demographic attributes, such as ZIP code, dateof birth, ethnicity, gender and martial status, can be.To illustrate this problem, Figure 1 exempli�es a table of released medical data de-identi�ed by suppress-ing names and Social Security Numbers (SSNs) so as not to disclose the identities of individuals to whomthe data refer. However, values of other released attributes, such as fZIP, Date Of Birth, Ethnicity, Sex,Marital Statusg can also appear in some external table jointly with the individual identity, and can there-fore allow it to be tracked. As illustrated in Figure 1, ZIP, Date Of Birth, and Sex can be linked to theVoter List to reveal the Name, Address, and City. Likewise, Ethnicity and Marital Status can be linkedto other publicly available population registers. In the Medical Data table of Figure 1, there is only onefemale, born on 9/15/61 and living in the 02142 area. From the uniqueness results mentioned previouslyregarding an actual voter list, more than 69% of the 54,805 voters could be uniquely identi�ed using justthese attributes. This combination uniquely identi�es the corresponding bulleted tuple in the released dataas pertaining to \Sue J. Carlson, 1459 Main Street, Cambridge" and therefore reveals she has reportedshortness of breath. (Notice the medical information is not assumed to be publicly associated with theindividuals, and the desired protection is to release the medical information such that the identities of theindividuals cannot be determined. However, the of the released characteristics for Sue J. Carlson leads todetermine which medical data among those released are hers.) While this example demonstrated an exactmatch, in some cases, released information can be linked to a restrictive set of individuals to whom thereleased information could refer.Several protection techniques have been developed with respect to statistical databases, such as scram-bling and swapping values and adding noise to the data in such a way as to maintain an overall statisticalproperty of the result [1, 21]. However, many new uses of data, including data mining, cost analysis andretrospective research, often need accurate information within the tuple itself. Two independently developedsystems have been released which use suppression and generalization as techniques to provide disclosure con-2



Medical Data Released as AnonymousSSN Name Ethnicity Date Of Birth Sex ZIP Marital Status Problemasian 09/27/64 female 02139 divorced hypertensionasian 09/30/64 female 02139 divorced obesityasian 04/18/64 male 02139 married chest painasian 04/15/64 male 02139 married obesityblack 03/13/63 male 02138 married hypertensionblack 03/18/63 male 02138 married shortness of breathblack 09/13/64 female 02141 married shortness of breathblack 09/07/64 female 02141 married obesitywhite 05/14/61 male 02138 single chest painwhite 05/08/61 male 02138 single obesity� white 09/15/61 female 02142 widow shortness of breathVoter ListName Address City ZIP DOB Sex Party ................................ ................ ................ ........ ........ ........ ................................ ................ ................ ........ ........ ........ ................� Sue J. Carlson 1459 Main St. Cambridge 02142 9/15/61 female democrat ................................ ................ ................ ........ ........ ........ ................Figure 1: Re-identifying anonymous data by linking to external datatrol while maintaining the integrity of the values within each tuple - namely Data
y in the United States [17]and Mu-Argus [11] in Europe. However, no formal foundations or abstraction have been provided for thetechniques employed by both. Further approximations made by the systems can su�er from drawbacks, suchas generalizing data more than is needed, like [17], or not providing adequate protection, like [11].In this paper we provide a formal foundation for the anonymity problem against linking and for theapplication of generalization and suppression towards its solution. We introduce the de�nition of quasi-identi�ers as attributes that can be exploited for linking, and of k-anonymity as characterizing the degreeof protection of data with respect to inference by linking. We show how k-anonymity can be ensuredin information releases by generalizing and/or suppressing part of the data to be disclosed. Within thisframework, we introduce the concepts of generalized table and of minimal generalization. Intuitively, ageneralization is minimal if data are not generalized more than necessary to provide k-anonymity. Also,the de�nition of preferred generalization allows the user to select, among possible minimal generalizations,those that satisfy particular conditions, such as favoring certain attributes in the generalization process. Wepresent an algorithm to compute a preferred minimal generalization of a given table. Finally, we discusssome experimental results derived from the application of our approach to a medical database containinginformation on 265 patients.The problem we consider di�ers from the traditional access control [3] and from statistical database [1,4, 8, 9, 12, 22] problems. Access control systems address the problem of controlling speci�c access to datawith respect to rules stating whether a piece of data can or cannot be released. In our work it is not thedisclosure of the speci�c piece of data to be protected (i.e., on which an access decision can be taken), butrather the fact that the data refers to a particular entity. Statistical database techniques address the problemof producing tabular data representing a summary of the information to be queried. Protection is enforcedin such a framework by ensuring that it is not possible for users to infer original individual data from theproduced summary. In our approach, instead, we allow the release of generalized person-speci�c data onwhich users can produce summaries according to their needs. The advantage with respect to precomputedrelease-speci�c statistics is an increased 
exibility and availability of information for the users. This 
exibilityand availability has as a drawback, from the end-user stand point, a coarse granularity level of the data.This new type of declassi�cation and release of information seems to be required more and more in today'semerging applications [18].The remainder of this paper is organized as follows. In Section 2 we introduce basic assumptions and3



de�nitions. In Section 3 we discuss generalization to provide anonymity, and in Section 4 we continue thediscussion to include suppression. In Section 5 basic preference policies for choosing among di�erent minimalgeneralizations are illustrated. In Section 6 we discuss an algorithmic implementation of our approach.Section 7 reports some experimental results. Section 8 concludes the paper.2 Assumptions and preliminary de�nitionsWe consider the data holder's table to be a private table PT where each tuple refers to a di�erent entity(individual, organization, and so on). From the private table PT, the data holder constructs a table which isto be an anonymous release of PT. For the sake of simplicity, we will subsequently refer to the privacy and re-identi�cation of individuals in cases equally applicable to other entities. We assume that all explicit identi�ers(e.g., names, SSNs, and addresses) are either encrypted or suppressed, and we therefore ignore them in theremainder of this paper. Borrowing the terminology from [6], we call the combination of characteristics onwhich linking can be enforced quasi-identi�ers . Quasi-identi�ers must therefore be protected. They arede�ned as follows.De�nition 2.1 (Quasi-identi�er) Let T (A1; : : : ; An) be a table. A quasi-identi�er of T is a set of at-tributes fAi; : : : ; Ajg � fA1; : : : ; Ang whose release must be controlled.Given a table T (A1; : : : ; An), a subset of attributes fAi; : : : ; Ajg � fA1; : : : ; Ang, and a tuple t 2 T ,t[Ai; : : : ; Aj ] denotes the sequence of the values of Ai; : : : ; Aj in t, T (Ai; : : : ; Aj) denotes the projection,maintaining duplicate tuples, of attributes Ai; : : : ; Aj in T . Also, QIT denotes the set of quasi-identi�ersassociated with T , and jT j denotes cardinality, that is, the number of tuples in T .Our goal is to allow the release of information in the table while ensuring the anonymity of the individuals.The anonymity constraint requires released information to indistinctly relate to at least a given number k ofindividuals, where k is typically set by the data holder, as stated by the following requirement.De�nition 2.2 (k-anonymity requirement) Each release of data must be such that every combinationof values of quasi-identi�ers can be indistinctly matched to at least k individuals.Adherence to the anonymity requirement necessitates knowing how many individuals each released tuplematches. This can be done by explicitly linking the released data with externally available data. This isobviously an impossible task for the data holder. Although we can assume that the data holder knowswhich attributes may appear in external tables, and therefore what constitutes quasi-identi�ers, the speci�cvalues of data in external knowledge cannot be assumed. The key to satisfying the k-anonymity requirement,therefore, is to translate the requirement in terms of the released data themselves. In order to do that, werequire the following assumption to hold.Assumption 2.1 All attributes in table PT which are to be released and which are externally available incombination (i.e., appearing together in an external table or in possible joins between external tables) 1 to adata recipient are de�ned in a quasi-denti�er associated with PT.Although this is not a trivial assumption its enforcement is possible. The data holder estimates whichattributes might be used to link with outside knowledge; this of course forms the basis for a quasi-identi�er.While the expectation of this knowledge is somewhat reasonable for publicly available data, we recognize thatthere are far too many sources of semi public and private information such as pharmacy records, longitudinal1A universal relation combining external tables can be imagined [20].4



studies, �nancial records, survey responses, occupational lists, and membership lists, to account a priori forall linking possibilities [18]. Suppose the choice of attributes for a quasi-identi�er is incorrect; that is, thedata holder misjudges which attributes are sensitive for linking. In this case, the released data may be lessanonymous than what was required, and as a result, individuals may be more easily identi�ed. Sweeney [18]examines this risk and shows that it cannot be perfectly resolved by the data holder since the data holdercannot always know what each recipient of the data knows. [18] poses solutions that reside in policies, laws,and contracts. In the remainder of this work, we assume that proper quasi-identi�ers have been recognized.We introduce the de�nition of k-anonymity for a table as follows.De�nition 2.3 (k-anonymity) Let T (A1; : : : ; An) be a table and QIT be the quasi-identi�ers associatedwith it. T is said to satisfy k-anonymity i� for each quasi-identi�er QI 2 QIT each sequence of values inT [QI ] appears at least with k occurrences in T [QI ].Under Assumption 2.1, and under the hypothesis that the privately stored table contains at most onetuple for each identity to be protected (i.e., to whom a quasi-identi�er refers), k-anonymity of a releasedtable represents a su�cient condition for the satisfaction of the k-anonymity requirement. In other words,a table satisfying De�nition 2.3 for a given, k satis�es the k-anonymity requirement for such a k. Considera quasi-identi�er QI ; if De�nition 2.3 is satis�ed, each tuple in PT[QI ] has at least k occurrences. Sincethe population of the private table is a subset of the population of the outside world, there will be at leastk individuals in the outside world matching these values. Also, since all attributes available outside incombination are included in QI , no additional attributes can be joint to QI to reduce the cardinality ofsuch a set. (Note also that any subset of the attributes in QI will refer to k0 > k individuals.) To illustrate,consider the situation exempli�ed in Figure 1 but assume that the released data contained two occurrencesof the sequence white, 09/15/64, female, 02142, widow. Then at least two individuals matching suchoccurrences will exist in the voter list (or in the table combining the voter list with all other external tables),and it will not be possible for the data recipient to determine which of the two medical records associatedwith these values of the quasi-identi�er belong to which of the two individuals. Since k-anonymity of 2 wasprovided in the release, each medical record could indistinctly belong to at least two individuals.Given the assumption and de�nitions above, and given a private table PT to be released, we focus onthe problem of producing a version of PT which satis�es k-anonymity.3 Generalizing dataOur �rst approach to providing k-anonymity is based on the de�nition and use of generalization relationshipsbetween domains and between values that attributes can assume.3.1 Generalization relationshipsIn a classical relational database system, domains are used to describe the set of values that attributesassume. For example, there might be a ZIP code domain, a number domain, and a string domain. Weextend this notion of a domain to make it easier to describe how to generalize the values of an attribute. Inthe original database, where every value is as speci�c as possible, every attribute is in the ground domain.For example, 02139 is in the ground ZIP code domain, Z0. To achieve k-anonymity, we can make the ZIPcode less informative. We do this by saying that there is a more general, less speci�c, domain that can beused to describe ZIP codes, Z1, in which the last digit has been replaced by a 0. There is also a mapping fromZ0 to Z1, such as 02139 ! 02130. This mapping between domains is stated by means of a generalizationrelationship, which represents a partial order �D on the set Dom of domains, and which is required tosatisfy the following conditions: (1) each domain Di has at most one direct generalized domain, and (2) all5



Z2 = f02100gZ1 = f02130; 02140gZ0 = f02138; 20239; 02141; 02142g66 DGHZ0
0210002130 0214002138 02139 02141 02142����* HHHHY��� @@I @@I���VGHZ0 E1 = fpersongE0 = fasian; black; caucasiangDGHE06 personasian black caucasianVGHE0����* HHHHY6M2 = fnot releasedgM1 = fonce married; never marriedgM0 = fmarried; divorced; widow; singleg66 DGHM0

not releasedonce married never marriedmarried divorced widow single����* HHHHY���36 QQQk 6VGHM0 E1 = fnot releasedgE0 = fmale; femalegDGHG06 not releasedmale femaleVGHG0��� @@IFigure 2: Examples of domain and value generalization hierarchiesmaximal elements of Dom are singleton.2 The de�nition of this generalization implies the existence, for eachdomain D 2 Dom, of a hierarchy, which we term the domain generalization hierarchy DGHD. Sincegeneralized values can be used in place of more speci�c ones, it is important that all domains in a hierarchybe compatible. Compatibility can be ensured by using the same storage representation form for all domainsin a generalization hierarchy. A value generalization relationship, partial order �V, is also de�ned whichassociates with each value vi in a domain Di a unique value in domain Dj direct generalization of Di. Sucha relationship implies the existence, for each domain D, of a value generalization hierarchy VGHD.Example 3.1 Figure 2 illustrates an example of domain and value generalization hierarchies for domainZ0 representing zip-codes of the Cambridge, MA, area, E0 representing ethnicities, M0 representing maritalstatus, and G0 representing gender.In the remainder of this paper we will often refer to a domain or value generalization hierarchy in termsof the graph representing all and only the direct generalization relationships between the elements in it (i.e.,implied generalization relationships do not appear as arcs in the graph). We will use the term hierarchyinterchangeably to denote either a partially ordered set or the graph representing the set and all the directgeneralization relationships between its elements. We will explicitly refer to the ordered set or to the graphwhen it is not otherwise clear from context.Also, since we will be dealing with sets of attributes, it is useful to visualize the generalization relationshipand hierarchies in terms of tuples composed of elements of Dom or of their values. Given a tuple DT =hD1; : : : ; Dni such that Di 2 Dom; i = 1; : : : ; n, we de�ne the domain generalization hierarchy of DT asDGHDT = DGHD1 � : : :�DGHDn , assuming that the Cartesian product is ordered by imposing coordinate-wise order [7]. DGHDT de�nes a lattice whose minimal element is DT . The generalization hierarchy ofa domain tuple DT de�nes the di�erent ways in which DT can be generalized. In particular, each pathfrom DT to the unique maximal element of DGHDT in the graph describing DGHDT de�nes a possiblealternative path that can be followed in the generalization process. We refer to the set of nodes in each ofsuch paths together with the generalization relationships between them as a generalization strategy forDGHDT . Figure 3 illustrates the domain generalization hierarchy DGHE0;Z0 where the domain generalizationhierarchies of E0 and Z0 are as illustrated in Figure 2.2The motivation behind condition 2 is to ensure that all values in each domain can be eventually generalized to asingle value. 6



hE1; Z2ihE1; Z1i hE0; Z2ihE1; Z0i hE0; Z1ihE0; Z0i��� @@I@@I ���6 6HHHHY DGHDT
hE1 ; Z2ihE1 ; Z1ihE1 ; Z0ihE0 ; Z0i
666GS1

hE1; Z2ihE1; Z1ihE0; Z1ihE0; Z0i
666GS2

hE1; Z2ihE0; Z2ihE0; Z1ihE0; Z0i
666GS3Figure 3: Domain generalization hierarchy DGHDT and strategies for DT = hE0; Z0iEth:E0 ZIP:Z0asian 02138asian 02139asian 02141asian 02142black 02138black 02139black 02141black 02142white 02138white 02139white 02141white 02142PT

Eth:E1 ZIP:Z0person 02138person 02139person 02141person 02142person 02138person 02139person 02141person 02142person 02138person 02139person 02141person 02142GT[1;0]
Eth:E1 ZIP:Z1person 02130person 02130person 02140person 02140person 02130person 02130person 02140person 02140person 02130person 02130person 02140person 02140GT[1;1]

Eth:E0 ZIP:Z2asian 02100asian 02100asian 02100asian 02100black 02100black 02100black 02100black 02100white 02100white 02100white 02100white 02100GT[0;2]
Eth:E0 ZIP:Z1asian 02130asian 02130asian 02140asian 02140black 02130black 02130black 02140black 02140white 02130white 02130white 02140white 02140GT[0;1]Figure 4: Examples of generalized tables for PT3.2 Generalized table and minimal generalizationGiven a private table PT, our �rst approach to provide k-anonymity consists of generalizing the values storedin the table. Intuitively, attribute values stored in the private table can be substituted, upon release, withgeneralized values. Since multiple values can map to a single generalized value, generalization may decreasethe number of distinct tuples, thereby possibly increasing the size of the clusters containing tuples with thesame values. We perform generalization at the attribute level. Generalizing an attribute means substitutingits values with corresponding values from a more general domain. Generalization at the attribute levelensures that all values of an attribute belong to the same domain. However, as a result of the generalizationprocess, the domain of an attribute can change. In the following, dom(Ai; T ) denotes the domain of attributeAi in table T . Di = dom(Ai;PT) denotes the domain associated with attribute Ai in the private table PT.De�nition 3.1 (Generalized Table) Let Ti(A1; : : : ; An) and Tj(A1; : : : ; An) be two tables de�ned on thesame set of attributes. Tj is said to be a generalization of Ti, written Ti � Tj, i�1. jTij = jTj j2. 8z = 1; : : : ; n : dom(Az ; Ti) �D dom(Az ; Tj)3. It is possible to de�ne a bijective mapping between Ti and Tj that associates each tuples ti and tj suchthat ti[Az] �V tj [Az ].De�nition 3.1 states that a table Tj is a generalization of a table Ti, de�ned on the same attributes,i� (1 ) Ti and Tj have the same number of tuples, (2 ) the domain of each attribute in Tj is equal to or a7



hE1; Z2ihE1; Z1i hE0; Z2ihE1; Z0i hE0; Z1ihE0; Z0i��� @@I@@I ���6 6HHHHY DGHhE0;Z0i
[1,2][1,1] [0,2][1,0] [0,1][0,0]�� @@@@ ��HHHHFigure 5: Hierarchy DGHhE0 ;Z0i and corresponding lattice on distance vectorsgeneralization of the domain of the attribute in Ti, and (3 ) each tuple ti in Ti has a corresponding tuple tjin Tj (and vice versa) such that the value for each attribute in tj is equal to or a generalization of the valueof the corresponding attribute in ti.Example 3.2 Consider the table PT illustrated in Figure 4 and the domain and value generalization hierar-chies for E0 and Z0 illustrated in Figure 2. The remaining four tables in Figure 4 are all possible generalizedtables for PT, but the topmost one generalizes each tuple to hperson; 02100i. For the clarity of the example,each table reports the domain for each attribute in the table. With respect to k-anonymity, GT[0;1] satis�esk-anonymity for k = 1; 2; GT[1;0] satis�es k-anonymity for k = 1; 2; 3; GT[0;2] satis�es k-anonymity fork = 1; : : : ; 4, and GT[1;1] satis�es k-anonymity for k = 1; : : : ; 6:Given a table, di�erent possible generalizations exist. Not all generalizations, however, can be consideredequally satisfactory. For instance, the trivial generalization bringing each attribute to the highest possiblelevel of generalization, thus collapsing all tuples in T to the same list of values, provides k-anonymity atthe price of a strong generalization of the data. Such extreme generalization is not needed if a more speci�ctable (i.e., containing more speci�c values) exists which satis�es k-anonymity. This concept is captured bythe de�nition of k-minimal generalization. To introduce it we �rst introduce the notion of distance vector.De�nition 3.2 (Distance vector) Let Ti(A1; : : : ; An) and Tj(A1; : : : ; An) be two tables such that Ti � Tj .The distance vector of Tj from Ti is the vector DVi;j = [d1; : : : ; dn] where each dz is the length of the uniquepath between D =dom(Az ; Ti) and dom(Az ; Tj) in the domain generalization hierarchy DGHD.Example 3.3 Consider table PT and its generalized tables illustrated in Figure 4. The distance vectorsbetween PT and its di�erent generalizations are the vectors appearing as a subscript of each table.Given two distance vectors DV = [d1; : : : ; dn] and DV0 = [d01; : : : ; d0n], DV � DV0 i� di � d0i for all i =1; : : : ; n; DV < DV0 i� DV � DV0 and DV 6= DV0. A generalization hierarchy for a domain tuple can be seenas a hierarchy (lattice) on the corresponding distance vectors. For instance, Figure 5 illustrates the latticerepresenting the � relationship between the distance vectors corresponding to the possible generalization ofhE0; Z0i.We can now introduce the de�nition of k-minimal generalization.De�nition 3.3 (k-minimal generalization) Let Ti and Tj be two tables such that Ti � Tj. Tj is said tobe a k-minimal generalization of Ti i�1. Tj satis�es k-anonymity 8



Ethn DOB Sex ZIP Statusasian 09/27/64 female 02139 divorcedasian 09/30/64 female 02139 divorcedasian 04/18/64 male 02139 marriedasian 04/15/64 male 02139 marriedblack 03/13/63 male 02138 marriedblack 03/18/63 male 02138 marriedblack 09/13/64 female 02141 marriedblack 09/07/64 female 02141 marriedwhite 05/14/61 male 02138 singlewhite 05/08/61 male 02138 singlewhite 09/15/61 female 02142 widowPTEthn DOB Sex ZIP Statusasian 64 not rel 02100 not relasian 64 not rel 02100 not relasian 64 not rel 02100 not relasian 64 not rel 02100 not relblack 63 not rel 02100 not relblack 63 not rel 02100 not relblack 64 not rel 02100 not relblack 64 not rel 02100 not relwhite 61 not rel 02100 not relwhite 61 not rel 02100 not relwhite 61 not rel 02100 not relGT[0;2;1;2;2]
Ethn DOB Sex ZIP Statuspers [60-65] female 02130 beenpers [60-65] female 02130 beenpers [60-65] male 02130 beenpers [60-65] male 02130 beenpers [60-65] male 02130 beenpers [60-65] male 02130 beenpers [60-65] female 02140 beenpers [60-65] female 02140 beenpers [60-65] male 02130 neverpers [60-65] male 02130 neverpers [60-65] female 02140 beenGT[1;3;0;1;1]Figure 6: An example of table PT and its minimal generalizations2. 6 9Tz : Ti � Tz; Tz satis�es k-anonymity, and DVi;z < DVi;j .Intuitively, a generalization Tj is minimal i� there does not exist another generalization Tz satisfying k-anonymity which is dominated by Tj in the domain generalization hierarchy of hD1; : : : ; Dni (or, equivalently,in the corresponding lattice of distance vectors). If this were the case Tj would itself be a generalization forTz. Note also that a table can be a minimal generalization of itself if the table already achieved k-anonymity.Example 3.4 Consider table PT and its generalized tables illustrated in Figure 4. Assume QI = (Eth; ZIP)to be a quasi-identi�er. It is easy to see that for k = 2 there exist two k-minimal generalizations, which areGT[1;0] and GT[0;1]. Table GT[0;2], which satis�es the anonymity requirements, is not minimal since it is ageneralization of GT[0;1]. Analogously GT[1;1] cannot be minimal, being a generalization of both GT[1;0] andGT[0;1]. There are also only two k-minimal generalized tables for k=3, which are GT[1;0] and GT[0;2].Note that since k-anonymity requires the existence of k-occurrences for each sequence of values only forquasi-identi�ers, for every minimal generalization Tj , DVi;j [dz ] = 0 for all attributes Az which do not belongto any quasi-identi�er.4 Suppressing dataIn Section 3 we discussed how, given a private table PT, a generalized table can be produced which releasesa more general version of the data in PT and which satis�es a k-anonymity constraint. Generalization hasthe advantage of allowing release of all the single tuples in the table, although in a more general form. Here,we illustrate a complementary approach to providing k-anonymity, which is suppression. Suppressing meansto remove data from the table so that they are not released and as a disclosure control technique is notnew [5, 21]. We apply suppression at the tuple level, that is, a tuple can be suppressed only in its entirety.Suppression is used to \moderate" the generalization process when a limited number of outliers (that is,9



Ethn DOB Sex ZIP Statusasian 09/27/64 female 02139 divorcedasian 09/30/64 female 02139 divorcedasian 04/18/64 male 02139 marriedasian 04/15/64 male 02139 marriedblack 03/13/63 male 02138 marriedblack 03/18/63 male 02138 marriedblack 09/13/64 female 02141 marriedblack 09/07/64 female 02141 marriedwhite 05/14/61 male 02138 singlewhite 05/08/61 male 02138 singlePT
Ethn DOB Sex ZIP Statusasian 64 female 02139 divorcedasian 64 female 02139 divorcedasian 64 male 02139 marriedasian 64 male 02139 marriedblack 63 male 02138 marriedblack 63 male 02138 marriedblack 64 female 02141 marriedblack 64 female 02141 marriedwhite 61 male 02138 singlewhite 61 male 02138 singleGT[0;2;0;0;0]Figure 7: An example of table PT and its minimal generalizationEth:E0 ZIP:Z0asian 02138asian 02138asian 02142asian 02142black 02138black 02141black 02142white 02138PT

Eth:E1 ZIP:Z0person 02138person 02138person 02142person 02142person 02138person 02141person 02142person 02138GT[1;0]
Eth:E0 ZIP:Z1asian 02130asian 02130asian 02140asian 02140black 02130black 02140black 02140white 02130GT[0;1]

Eth:E0 ZIP:Z2asian 02100asian 02100asian 02100asian 02100black 02100black 02100black 02100white 02100GT[0;2]
Eth:E1 ZIP:Z1person 02130person 02130person 02140person 02140person 02130person 02140person 02140person 02130GT[1;1]Figure 8: Examples of generalized tables for PTtuples with less that k occurrences) would force a great amount of generalization. To clarify, consider thetable illustrated in Figure 1, whose projection on the considered quasi-identi�er is illustrated in Figure 6and suppose k-anonymity with k = 2 is to be provided. Attribute Date of Birth has a domain date withthe following generalizations: from the speci�c date (mm/dd/yy) to the month (mm/yy) to the year (yy) to a5-year interval (e.g., [60-64]) to a 10-year interval (e.g., [60,69]) to a 25-year interval and so on.3 It is easyto see that the presence of the last tuple in the table necessitates, for this requirement to be satis�ed, twosteps of generalization on Date of Birth, one step of generalization on Zip Code, one step of generalizationon Marital Status, and either one further step on Sex, Zip Code, and Marital Status, or, alternatively,on Ethnicity and Date of Birth. The two possible minimal generalizations are as illustrated in Figure 6.In practice, in both cases almost all the attributes must be generalized. It can be easily seen, at the sametime, that had this last tuple not been present k-anonymity could have been simply achieved by two steps ofgeneralization on attribute Date of Birth, as illustrated in Figure 7. Suppressing the tuple would in thiscase permit enforcement of less generalization.In illustrating how suppression interplays with generalization to provide k-anonymity, we begin by re-stating the de�nition of generalized table as follows.De�nition 4.1 (Generalized Table - with suppression) Let Ti(A1; : : : ; An) and Tj(A1; : : : ; An) be twotables de�ned on the same set of attributes. Tj is said to be a generalization of Ti, written Ti � Tj, i�1. jTj j � jTij2. 8z = 1; : : : ; n : dom(Az ; Ti) �D dom(Az ; Tj)3. It is possible to de�ne an injective mapping between Ti and Tj that associates tuples ti 2 Ti and tj 2 Tjsuch that ti[Az ] �V tj [Az ].3Note that although generalization may seem to change the format of the data, compatibility can be assured byusing the same representation form. For instance, the month can be represented always as a speci�c day. This isactually the trick that we used in our application of generalization.10



Eth:E0 ZIP:Z0asian 02138asian 02138asian 02142asian 02142black 02138black 02141black 02142white 02138PT
Eth:E1 ZIP:Z0person 02138person 02138person 02142person 02142person 02138person 02142person 02138GT[1;0]

Eth:E0 ZIP:Z1asian 02130asian 02130asian 02140asian 02140black 02140black 02140GT[0;1]
Eth:E0 ZIP:Z2asian 02100asian 02100asian 02100asian 02100black 02100black 02100black 02100GT[0;2]

Eth:E1 ZIP:Z1person 02130person 02130person 02140person 02140person 02130person 02140person 02140person 02130GT[1;1]Figure 9: Examples of generalized tables for PTThe de�nition above di�ers from De�nition 3.1 since it allows tuples appearing in Ti not to have anycorresponding generalized tuple in Tj . Intuitively, tuples in Ti not having any correspondent in Tj are tupleswhich have been suppressed.De�nition 4.1 allows any amount of suppression in a generalized table. Obviously, we are not interestedin tables that suppress more tuples than necessary to achieve k-anonymity at a given level of generalization.This is captured by the following de�nition.De�nition 4.2 (Minimal required suppression) Let Ti be a table and Tj a generalization of Ti satis-fying k-anonymity. Tj is said to enforce minimal required suppression i� 6 9Tz such that Ti � Tz;DVi;z =DVi;j ; jTj j < jTzj and Tz satis�es k-anonymity.Example 4.1 Consider the table PT and its generalizations illustrated in Figure 8. The tuples written inbold face and marked with double lines in each table are the tuples that must be suppressed to achieve k-anonymity of 2. Suppression of a subset of them would not reach the required anonymity. Suppression ofany superset would be unnecessary (not satisfying minimal required suppression).Allowing tuples to be suppressed typically a�ords more tables per level of generalization. It is trivial toprove, however, that for each possible distance vector, the generalized table satisfying a k-anonymity con-straint by enforcing minimal suppression is unique. This table is obtained by �rst applying the generalizationdescribed by the distance vector and then removing all and only the tuples that appear with fewer than koccurrences.In the remainder of this paper we assume the condition stated in De�nition 4.2 to be satis�ed, that is, allgeneralizations that we consider enforce minimal required suppression. Hence, in the following, within thecontext of a k-anonymity constraint, when referring to the generalization at a given distance vector we willintend the unique generalization for that distance vector which satis�es the k-anonymity constraint enforcingminimal required suppression. To illustrate, consider the table PT in Figure 8; with respect to k-anonymitywith k=2, we would refer to its generalizations as illustrated in Figure 9. (Note that for sake of clarity, wehave left an empty row to correspond to each removed tuple.)Generalization and suppression are two di�erent approaches to obtaining, from a given table, a tablewhich satis�es k-anonymity. It is trivial to note that the two approaches produce the best results when jointlyapplied. For instance, we have already noticed how, with respect to the table in Figure 1, generalizationalone is unsatisfactory (see Figure 6). Suppression alone, on the other side, would require suppression of alltuples in the table. Joint application of the two techniques allows, instead, the release of a table like theone in Figure 7. The question is therefore whether it is better to generalize, at the cost of less precisionin the data, or to suppress, at the cost of completeness. From observations of real-life applications andrequirements [16], we assume the following. We consider an acceptable suppression threshold MaxSup, asspeci�ed, stating the maximum number of suppressed tuples that is considered acceptable. Within thisacceptable threshold, suppression is considered preferable to generalization (in other words, it is better to11



suppress more tuples than to enforce more generalization). The reason for this is that suppression a�ectssingle tuples whereas generalization modi�es all values associated with an attribute, thus a�ecting all tuplesin the table. Tables which enforce suppression beyond MaxSup are considered unacceptable.Given these assumptions, we can now restate the de�nition of k-minimal generalization taking suppressioninto consideration.De�nition 4.3 (k-minimal generalization - with suppression) Let Ti and Tj be two tables such thatTi � Tj and let MaxSup be the speci�ed threshold of acceptable suppression. Tj is said to be a k-minimalgeneralization of a table Ti i�1. Tj satis�es k-anonymity2. jTij � jTj j � MaxSup3. 6 9Tz : Ti � Tz; Tz satis�es conditions 1 and 2, and DVi;z < DVi;j .Intuitively, generalization Tj is k-minimal i� it satis�es k-anonymity, it does not enforce more suppressionthan it is allowed, and there does not exist another generalization satisfying these conditions with a distancevector smaller than that of Tj , nor does there exist another table with the same level of generalizationsatisfying these conditions with less suppression.Example 4.2 Consider the private table PT illustrated in Figure 9 and suppose k-anonymity with k = 2is required. The possible generalizations (but the topmost one collapsing every tuple to hperson; 02100i) areillustrated in Figure 9. Depending on the acceptable suppression threshold, the following generalizations areconsidered minimal:MaxSup = 0 : GT[1;1] (GT[1;0];GT[0;1], or GT[0;2] suppress more tuple than it is allowed, GT[1;2] is notminimal because of GT[1;1]);MaxSup = 1 : GT[1;0] and GT[0;2] (GT[0;1] suppresses more tuple than it is allowed, GT[1;1] is not minimalbecause of GT[1;0] and GT[1;2] is not minimal because of GT[1;0] and GT[0;2]);MaxSup � 2 : GT[1;0] and GT[0;1] (GT[0;2] is not minimal because of GT[0;1], GT[1;1] and GT[1;2] are notminimal because of GT[1;0] and GT[0;1]).5 PreferencesIt is clear from Section 4 that there may be more than one minimal generalization for a given table, suppres-sion threshold and k-anonymity constraint. This is completely legitimate since the de�nition of \minimal"only captures the concept that the least amount of generalization and suppression necessary to achieve k-anonymity is enforced. However, multiple solutions may exist which satisfy this condition. Which of thesolutions is to be preferred depends on subjective measures and preferences of the data recipient. For in-stance, depending on the use of the released data, it may be preferable to generalize some attributes insteadof others. We outline here some simple preference policies that can be applied in choosing a preferred min-imal generalization. To do that, we �rst introduce two distance measures de�ned between tables: absoluteand relative distance. Let Ti(A1; : : : ; An) be a table and Tj(A1; : : : ; An) be one of its generalizations withdistance vector DVi;j = [d1; : : : ; dn]. The absolute distance of Tj from Ti, written Absdisti;j , is the sum ofthe distances for each attribute. Formally, Absdisti;j =Pni=1 di. The relative distance of Tj from Ti, writtenReldisti;j , is the sum of the \relative" distance for each attribute, where the relative distance of each attributeis obtained by dividing the distance over the total height of the hierarchy. Formally, Reldisti;j = Pnz=1 dzhz ,where hz is the height of the domain generalization hierarchy of dom(Az ; Ti).Given those distance measures we can outline the following basic preference policies:12



Minimum absolute distance prefers the generalization(s) that has a smaller absolute distance, that is,with a smaller total number of generalization steps (regardless of the hierarchies on which they havebeen taken).Minimum relative distance prefers the generalization(s) that has a smaller relative distance, that is,that minimizes the total number of relative steps, that is, considered with respect to the height of thehierarchy on which they are taken.Maximum distribution prefers the generalization(s) that contains the greatest number of distinct tuples.Minimum suppression prefers the generalization(s) that suppresses less, that is, that contains the greaternumber of tuples.Example 5.1 Consider Example 4.2. Suppose MaxSup = 1. Minimal generalizations are GT[1;0] and GT[0;2].Under minimum absolute distance, GT[1;0] is preferred. Under minimum relative distance, maximum distribu-tion, and minimum suppression policies, the two generalizations are equally preferable. Suppose MaxSup = 2.Minimal generalizations are GT[1;0] and GT[0;1]. Under the minimum absolute distance policy, the two gen-eralizations are equally preferable. Under the minimum suppression policy, GT[1;0] is preferred. Under theminimum relative distance and the maximum distribution policies, GT[0;1] is preferred.The list above is obviously not complete and there remain additional preference policies that could beapplied; the best one to use, of course, depends on the speci�c use for the released data. Examination of anexhaustive set of possible policies is outside the scope of this paper. The choice of a speci�c preference policyis done by the requester at the time of access [18]. Di�erent preference policies can be applied to di�erentquasi-identi�ers in the same released data.6 Computing a preferred generalizationWe have de�ned the concept of preferred k-minimal generalization corresponding to a given private table.Here, we illustrate an approach to computing such a generalization. Before discussing the algorithm we makesome observations clarifying the problem of �nding a minimal generalization and its complexity. We use theterm outlier to refer to a tuple with fewer than k occurrences, where k is the anonymity constraint required.First of all, given that the k-anonymity property is required only for attributes in quasi-identi�ers,we consider the generalization of each speci�c quasi-identi�er within table PT independently. Instead ofconsidering the whole table PT to be generalized, we consider its projection PT[QI ], keeping duplicates, onthe attributes of a quasi-identi�er QI . The generalized table PT is obtained by enforcing generalization foreach quasi-identi�er QI 2 QIPT. The correctness of the combination of the generalizations independentlyproduced for each quasi-identi�er is ensured by the fact that the de�nition of a generalized table requirescorrespondence of values across whole tuples and by the fact that the quasi-identi�ers of a table are disjoint. 4In Section 3 we illustrated the concepts of a generalization hierarchy and strategies for a domain tuple.Given a quasi-identi�er QI = (A1; : : : ; An), the corresponding domain hierarchy on DT = hD1; : : : ; Dnipictures all the possible generalizations and their relationships. Each path (strategy) in it de�nes a di�erentway in which generalization can be applied. With respect to a strategy, we could de�ne the concept oflocal minimal generalization as the generalization that is minimal with respect to the set of generalizationsin the strategy (intuitively the �rst found in the path from the bottom element DT to the top element).Each k-minimal generalization is locally minimal with respect to some strategy, as stated by the followingtheorem.4This last constraint can be removed provided that generalization of non-disjoint quasi-identi�ers be executedserially. 13



Theorem 6.1 Let T (A1; : : : ; An) = PT[QI ] be the table to be generalized and let DT = hD1; : : : ; Dni be thetuple where Dz = dom(Az ; T ), z = 1; : : : ; n, be a table to be generalized. Every k-minimal generalization ofTi is a local minimal generalization for some strategy of DGHDT .Proof.(sketch) By contradiction. Suppose Tj is k-minimal but is not locally minimal with respect toany strategy. Then, there exists a strategy containing Tj such that there exists another generalization Tzdominated by Tj in this strategy which satis�es k-anonymity by suppressing no more tuples than what isallowed. Hence, Tz satis�es conditions 1 and 2 of De�nition 4.3. Moreover, since Tz is dominated by Tj ,DVi;z < DVi;j . Hence, Tj cannot be minimal, which contradicts the assumption. 2Since strategies are not disjoint, the converse is not necessarily true, that is, a local minimal generalizationwith respect to a strategy may not correspond to a k-minimal generalization.From Theorem 6.1, following each generalization strategy from the domain tuple to the maximal elementof the hierarchy would then reveal all the local minimal generalizations from which the k-minimal general-izations can be selected and an eventual preferred generalization chosen. (The consideration of preferencesimplies that we cannot stop the search at the �rst generalization found that is known to be k-minimal.)However, this process is much too costly because of the high number of strategies which should be followed.It can be proved that the number of di�erent strategies for a domain tuple DT = hD1; : : : ; Dni is (h1+:::+hn)!h1!:::hn! ,where each hi is the length of the path from Di to the top domain in DGHDi .In the implementation of our approach we have realized an algorithm that computes a preferred gen-eralization without needing to follow all the strategies and computing the generalizations. The algorithmmakes use of the concept of distance vector between tuples. Let T be a table and x; y 2 T two tuples suchthat x = hv01; : : : ; v0ni and y = hv001 ; : : : ; v00ni where each v0i; v00i is a value in domain Di. The distance vectorbetween x and y is the vector Vx;y = [d1; : : : ; dn] where di is the length of the paths from v0i and v00i to theirclosest common ancestor in the value generalization hierarchy VGHDi . For instance, with reference to thePT illustrated in Figure 4, the distance between hasian,02139i and hblack,02139i is [1,0]. Intuitively, thedistance between two tuples x and y in table Ti is the distance vector between Ti and the table Tj , withTi � Tj where the domains of the attribute in Tj are the most speci�c domains for which x and y generalizeto the same tuple t.The following theorem states the relationship between distance vectors between tuples in a table and aminimal generalization for the table.Theorem 6.2 Let Ti(A1; : : : ; An) = PT[QI ] and Tj be two tables such that Ti � Tj. If Tj is k-minimal thenDVi;j = Vx;y for some tuples x; y in Ti such that either x or y has a number of occurrences smaller than k.Proof.(sketch) By contradiction. Suppose that a k-minimal generalization Tj exists such that DVi;jdoes not satisfy the condition above. Let DVi;j = [d1; : : : ; dn]. Consider a strategy containing a generalizationwith that distance vector (there will be more than one of such strategies, and which one is considered is notimportant). Consider the di�erent generalization steps executed according to the strategy, from the bottomgoing up, arriving at the generalization corresponding to Tj . Since no outlier is at exact distance [d1; : : : ; dn]from any tuple, no outlier is merged with any tuple at the last step of generalization considered. Then thegeneralization directly below Tj in the strategy satis�es the same k-anonymity constraint as Ti with the sameamount of suppression. Also, by de�nition of strategy, DVi;z < DVi;j . Then, by De�nition 4.3, Tj cannot beminimal, which contradicts the assumption. 2According to Theorem 6.2 the distance vector of a minimal generalization falls within the set of thevectors between the outliers and other tuples in the table. This property is exploited by the generalizationalgorithm to reduce the number of generalizations to be considered.The algorithm works as follows. Let PT[QI ] be the projection of PT over quasi-identi�er QI . First, alldistinct tuples in PT[QI ] are determined together with the number of their occurrences. Then, the distance14



vectors between each outlier and every tuple in the table is computed. Then, a DAG with, as nodes, alldistance vectors found is constructed. There is an arc from each vector to all the smallest vector dominatingit in the set. Intuitively, the DAG corresponds to a \summary" of the strategies to be considered (notall strategies may be represented, and not all generalizations of a strategy may be present). Each path inthe DAG is then followed from the bottom up until a minimal local generalization is found. The algorithmdetermines if a generalization is locally minimal simply by controlling how the occurrences of the tuples wouldcombine (on the basis of the distance table constructed at the beginning), without actually performing thegeneralization. When a local generalization is found, another path is followed. As paths may be not disjoint,the algorithm keeps track of generalizations that have been considered so as to stop on a path when it runsinto another path on which a local minimum has already been found. Once all possible paths have beenexamined, the evaluation of the distance vectors allows the determination of the generalizations, among thosefound, which are k-minimal. Among them, a preferred generalization to be computed is then determined onthe basis of the distance vectors and of how the occurrences of tuples would combine.The characteristics that reduce the computation cost are therefore that (1) the computation of thedistance vectors between tuples greatly reduces the number of generalizations to be considered; (2) gener-alizations are not actually computed but foreseen by looking at how the occurrences of the tuples wouldcombine; (3) the fact that the algorithm keeps track of evaluated generalizations allows it to stop evaluationon a path whenever it crosses a path already evaluated.The correctness of the algorithm descends directly from Theorems 6.1 and 6.2.The necessary and su�cient condition for a table T to satisfy k-anonymity is that the cardinality of thetable be at least k, and only in this case, therefore, is the algorithm applied. This is stated by the followingtheorem.Theorem 6.3 Let T be a table, MaxSup � jT j be the acceptable suppression threshold, and k be a naturalnumber. If jT j � k, then there exists at least a k-minimal generalization for T . If jT j < k there are nonon-empty k-minimal generalizations for T .Proof.(sketch) Suppose jT j � k. Consider the generalization generalizing each tuple to the topmostpossible domain. Since maximal elements of Dom are singleton, all values of an attribute collapse to the samevalue. Hence, the generalization will contain jT j occurrences of the same tuple. Since jT j � k, it satis�esk-anonymity. Suppose jT j < k, no generalization can satisfy k-anonymity, which can be reached only bysuppressing all the tuples in T . 27 Application of the approach: some experimental resultsWe constructed a computer program that produces tables adhering to k-minimal generalizations given speci�cthresholds of suppression. The program was written in C++, using ODBC to interface with an SQL server,which in turn accessed a medical database. Our goal was to model an actual release and to measure the qualityof the released data. Most states have legislative mandates to collect medical data from hospitals, so wecollapsed the original medical database into a single table consistent with the format and primary attributesthe National Association of Health Data Organizations recommends that state agencies collect [14]. Eachtuple represents one patient, and each patient is unique. The data contained medical records for 265 patients.Figure 10 itemizes the attributes used; the table is considered de-identi�ed because it contains no explicitidentifying information such as name or address. As discussed earlier, ZIP code, date of birth, and gender canbe linked to population registers that are publicly available in order to re-identify patients [18]. Therefore,the quasi-identi�er QI fZIP, birth date, gender, ethnicityg was considered. Each tuple within QI wasfound to be unique.The top table in Figure 10 is a sample of the original data, and the lower table illustrates a k-minimalgeneralization of that table given a threshold of suppression. The ZIP �eld has been generalized to the15



Attribute # distinct values min frequency max frequency median frequency commentsZIP 66 1 24 2Birth year 23 1 31 10 23 yr rangeGender 2 96 169 132Ethnicity 4 6 211 24Table 1: Distribution of values in the table considered in the experiment�rst 3 digits, and date of birth to the year. The tuple with the unusual ZIP code of 32030-1057 has beensuppressed. The recipient of the data is informed of the levels of generalizations and how many tuples weresuppressed. (Note: The default value for month is January and for day is the 1st when dates are generalized.This is done for practical considerations that preserve the data type originally assigned to the attribute (seeSection 3).)Table 1 itemizes the basic distribution of values within the attributes. ZIP codes were stored in thefull 9-digit form, with a generalization hierarchy replacing rightmost digits with 0, of 10 levels. Birth dateswere generalized �rst to the month, then 1-year, 5-year, 10-year, 20-year, and 100-year periods. A two-levelhierarchy was considered for gender and ethnicity (see Figure 2). The product of the number of possibledomains for each attribute gives the total number of possible generalizations, which is 280.The program constructed a clique where each node was a tuple and the edges were weighted by distancevectors between adjacent tuples. Reading these vectors from the clique, the program generated a set ofgeneralizations to consider. There were 141 generalizations read from the clique, discarding 139 or 50%. Forour tests, we used values of k to be 3, 6, 9, ..., 30 and a maximum suppression threshold of 10% or 27 tuples.Figure 11 shows the relationship between suppression and generalization within the program in a practicaland realistic application. We measure the loss of data quality due to suppression as the ratio of the number oftuples suppressed divided by the total number of tuples in the original data. We de�ne the inverse measureof \completeness", to determine how much of the data remains, computed as one minus the loss due tosuppression. Generalization also reduces the quality of the data since generalized values are less precise. Wemeasure the loss due to generalization as the ratio of the level of generalization divided by the total heightof the generalization hierarchy. We term \precision" as the amount of speci�city remaining in the data,computed as one minus the loss due to generalization.In Charts (A) and (B) of Figure 11 we compare the data quality loss as the k-anonymity requirementincreases. Losses are reported for both generalization and suppression for each attribute as if it were solelyresponsible for achieving the k-anonymity requirement. By doing so, we characterize the distribution andnature of values found in these attributes. Given the distribution of males (96) and females (169) in the data,the gender attribute itself can achieve these values of k so we see no loss due to generalization or suppression.On the other hand, there were 258 of 265 distinct birth dates. Clearly, date of birth and ZIP code are themost discriminating values, so it is not surprising that they must be generalized more than other attributes.The 
at lines on these curves indicate values being somewhat clusteredCharts (C) and (D) of Figure 11 report completeness and precision measurements for the 44 minimalgeneralizations found. Basically, generalizations that satisfy smaller values of k appear further to the rightin chart (C), and those generalizations that achieve larger values of k are leftmost. This results from theobservation that the larger the value for k, the more generalization may be required, resulting, of course, ina loss of precision. It is also not surprising that completeness remains above 0.90 because our suppressionthreshold during these tests was 10%. Though not shown in the charts, it can easily be understood thatraising the suppression threshold typically improves precision since more values can be suppressed to achievek. Clearly, generalization is expensive to the quality of the data since it is performed across the entireattribute; every tuple is a�ected. On the other hand, it remains semantically more useful to have a value16



Figure 10: Example of current release practice and minimally generalized equivalent

Figure 11: Experimental results based on 265 medical records17



present, even if it is a less precise one, than not having any value at all, as is the result of suppression.From these experiments it is clear that the techniques of generalization and suppression can be used inpractical applications. Of course, protecting against linking involves a loss of data quality in the attributesthat comprise the quasi-identi�er, though we have shown that the loss is not severe. These techniques areclearly most e�ective when the primary attributes required by the recipient are not the same as the quasi-identi�er that can be used for linking. In the sample medical data shown earlier, researchers, computerscientists, health economists and others value the information that is not included in the quasi-identi�er inorder to develop diagnostic tools, perform retrospective research, and assess hospital costs [18].8 ConclusionsWe have presented an approach to disclosing entity-speci�c information such that the released table cannotbe reliably linked to external tables. The anonymity requirement is expressed by specifying a quasi-identi�erand a minimum number k of duplicates of each released tuple with respect to the attributes of the quasi-identi�er. The anonymity requirement is achieved by generalizing, and possibly suppressing, informationupon release. We have given the notion of minimal generalization capturing the property that informa-tion is not generalized more than it is needed to achieve the anonymity requirement. We have discussedpossible preference policies to choose between di�erent minimal generalizations and an algorithm to com-pute a preferred minimal generalization. Finally, we have illustrated the results of some experiments fromthe application of our approach to the release of a medical database containing information regarding 265patients.This work represents only a �rst step toward the de�nition of a complete framework for informationdisclosure control. Many problems are still open. From a modeling point of view, the de�nition of quasi-identi�ers and of an appropriate size of k must be addressed. The quality of generalized data is best whenthe attributes most important to the recipient do not belong to any quasi-identi�er. For public-use �les thismay be acceptable, but determining the quality and usefulness in other settings must be further researched.From the technical point of view, future work should include the investigation of an e�cient algorithm [15]to enforce the proposed techniques and the consideration of speci�c queries, of multiple releases over time,and of data updating, which may allow inference attacks [10, 13].AcknowledgmentsWe thank Steve Dawson, at SRI, for discussions and support; Rema Padman at CMU for discussions onmetrics; and, Dr. Lee Mann of Inova Health Systems, Lexical Technology, Inc., and Dr. Fred Chu formaking medical data available to validate our approaches. We also thank Sylvia Barrett and Henry Leitnerof Harvard University for their support.References[1] N.R. Adam and J.C. Wortman. Security-control methods for statistical databases: A comparativestudy. ACM Computing Surveys, 21:515{556, 1989.[2] Ross Anderson. A security policy model for clinical information systems. In Proc. of the 1996 IEEESymposium on Security and Privacy, pages 30{43, Oakland, CA, May 1996.[3] Silvana Castano, Maria Grazia Fugini, Giancarlo Martella, and Pierangela Samarati. Database Security.Addison Wesley, 1995. 18
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