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Abstract

Today’s globally networked society places great demand on the dissemination and sharing of person-specific
data. Situations where aggregate statistical information was once the reporting norm now rely heavily on the
transfer of microscopically detailed transaction and encounter information. This happens at a time when
more and more historically public information is also electronically available. When these data are linked
together, they provide an electronic shadow of a person or organization that is as identifying and personal
as a fingerprint, even when the sources of the information contains no explicit identifiers, such as name
and phone number. In order to protect the anonymity of individuals to whom released data refer, data
holders often remove or encrypt explicit identifiers such as names, addresses and phone numbers. However,
other distinctive data, which we term quasi-identifiers, often combine uniquely and can be linked to publicly
available information to re-identify individuals.

In this paper we address the problem of releasing person-specific data while, at the same time, safequarding
the anonymity of the individuals to whom the data refer. The approach is based on the definition of k-
anonymity. A table provides k-anonymity if attempts to link explicitly identifying information to its contents
ambiguously map the information to at least k entities. We illustrate how k-anonymity can be provided by
using generalization and suppression techniques. We introduce the concept of minimal generalization, which
captures the property of the release process not to distort the data more than needed to achieve k-anonymity.
We illustrate possible preference policies to choose among different minimal generalizations. Finally, we
present an algorithm and experimental results when an implementation of the algorithm was used to produce
releases of real medical information. We also report on the quality of the released data by measuring the
precision and completeness of the results for different values of k.
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1 Introduction

In the age of the Internet and inexpensive computing power, society has developed an insatiable appetite
for information, all kinds of information for many new and often exciting uses. Most actions in daily life
are recorded on some computer somewhere. That information in turn is often shared, exchanged, and sold.
Many people may not care that the local grocer keeps track of which items they purchase, but shared
information can be quite sensitive or damaging to individuals and organizations. Improper disclosure of
medical information, financial information or matters of national security can have alarming ramifications,
and many abuses have been cited [2, 23]. The objective is to release information freely but to do so in a way
that the identity of any individual contained in the data cannot be recognized. In this way, information can
be shared freely and used for many new purposes.

Shockingly, there remains a common incorrect belief that if the data looks anonymous, it is anonymous.
Data holders, including government agencies, often remove all explicit identifiers, such as name, address,
and phone number, from data so that other information in the data can be shared, incorrectly believing
that the identities of individuals cannot be determined. On the contrary, de-identifying data provides no
guarantee of anonymity [18]. Released information often contains other data, such as birth date, gender,
and ZIP code, that in combination can be linked to publicly available information to re-identify individuals.
Most municipalities sell population registers that include the identities of individuals along with basic demo-
graphics; examples include local census data, voter lists, city directories, and information from motor vehicle
agencies, tax assessors, and real estate agencies. For example, an electronic version of a city’s voter list was
purchased for twenty dollars and used to show the ease of re-identifying medical records [18]. In addition to
names and addresses, the voter list included the birth dates and genders of 54,805 voters. Of these, 12% had
unique birth dates, 29% were unique with respect to birth date and gender, 69% with respect to birth date
and a 5-digit ZIP code, and, 97% were identifiable with just the full postal code and birth date [18]. These
results reveal how uniquely identifying combinations of basic demographic attributes, such as ZIP code, date
of birth, ethnicity, gender and martial status, can be.

To illustrate this problem, Figure 1 exemplifies a table of released medical data de-identified by suppress-
ing names and Social Security Numbers (SSNs) so as not to disclose the identities of individuals to whom
the data refer. However, values of other released attributes, such as {ZIP, Date 0f Birth, Ethnicity, Sex,
Marital Status} can also appear in some external table jointly with the individual identity, and can there-
fore allow it to be tracked. As illustrated in Figure 1, ZIP, Date 0f Birth, and Sex can be linked to the
Voter List to reveal the Name, Address, and City. Likewise, Ethnicity and Marital Status can be linked
to other publicly available population registers. In the Medical Data table of Figure 1, there is only one
female, born on 9/15/61 and living in the 02142 area. From the uniqueness results mentioned previously
regarding an actual voter list, more than 69% of the 54,805 voters could be uniquely identified using just
these attributes. This combination uniquely identifies the corresponding bulleted tuple in the released data
as pertaining to “Sue J. Carlson, 1459 Main Street, Cambridge” and therefore reveals she has reported
shortness of breath. (Notice the medical information is not assumed to be publicly associated with the
individuals, and the desired protection is to release the medical information such that the identities of the
individuals cannot be determined. However, the of the released characteristics for Sue J. Carlson leads to
determine which medical data among those released are hers.) While this example demonstrated an exact
match, in some cases, released information can be linked to a restrictive set of individuals to whom the
released information could refer.

Several protection techniques have been developed with respect to statistical databases, such as scram-
bling and swapping values and adding noise to the data in such a way as to maintain an overall statistical
property of the result [1, 21]. However, many new uses of data, including data mining, cost analysis and
retrospective research, often need accurate information within the tuple itself. Two independently developed
systems have been released which use suppression and generalization as techniques to provide disclosure con-



Medical Data Released as Anonymous

SSN Name Ethnicity Date Of Birth Sex ZIP Marital Status Problem

asian 09/27/64 female 02139 divorced hypertension
asian 09/30/64 female 02139 divorced obesity
asian 04/18/64 male 02139 married chest pain
asian 04/15/64 male 02139 married obesity
black 03/13/63 male 02138 married hypertension
black 03/18/63 male 02138 married shortness of breath
black 09/13/64 female 02141 married shortness of breath
black 09/07/64 female 02141 married obesity
white 05/14/61 male 02138 single chest pain
white 05/08/61 male 02138 single obesity

. white 09/15/61 female 02142 widow shortness of breath

Voter List
Name Address City ZI1P DOB Sex Party [ ...l

Figure 1: Re-identifying anonymous data by linking to external data

trol while maintaining the integrity of the values within each tuple - namely Datafly in the United States [17]
and Mu-Argus [11] in Europe. However, no formal foundations or abstraction have been provided for the
techniques employed by both. Further approximations made by the systems can suffer from drawbacks, such
as generalizing data more than is needed, like [17], or not providing adequate protection, like [11].

In this paper we provide a formal foundation for the anonymity problem against linking and for the
application of generalization and suppression towards its solution. We introduce the definition of quasi-
identifiers as attributes that can be exploited for linking, and of k-anonymity as characterizing the degree
of protection of data with respect to inference by linking. We show how k-anonymity can be ensured
in information releases by generalizing and/or suppressing part of the data to be disclosed. Within this
framework, we introduce the concepts of generalized table and of minimal generalization. Intuitively, a
generalization is minimal if data are not generalized more than necessary to provide k-anonymity. Also,
the definition of preferred generalization allows the user to select, among possible minimal generalizations,
those that satisfy particular conditions, such as favoring certain attributes in the generalization process. We
present an algorithm to compute a preferred minimal generalization of a given table. Finally, we discuss
some experimental results derived from the application of our approach to a medical database containing
information on 265 patients.

The problem we consider differs from the traditional access control [3] and from statistical database [1,
4, 8,9, 12, 22] problems. Access control systems address the problem of controlling specific access to data
with respect to rules stating whether a piece of data can or cannot be released. In our work it is not the
disclosure of the specific piece of data to be protected (i.e., on which an access decision can be taken), but
rather the fact that the data refers to a particular entity. Statistical database techniques address the problem
of producing tabular data representing a summary of the information to be queried. Protection is enforced
in such a framework by ensuring that it is not possible for users to infer original individual data from the
produced summary. In our approach, instead, we allow the release of generalized person-specific data on
which users can produce summaries according to their needs. The advantage with respect to precomputed
release-specific statistics is an increased flexibility and availability of information for the users. This flexibility
and availability has as a drawback, from the end-user stand point, a coarse granularity level of the data.
This new type of declassification and release of information seems to be required more and more in today’s
emerging applications [18].

The remainder of this paper is organized as follows. In Section 2 we introduce basic assumptions and



definitions. In Section 3 we discuss generalization to provide anonymity, and in Section 4 we continue the
discussion to include suppression. In Section 5 basic preference policies for choosing among different minimal
generalizations are illustrated. In Section 6 we discuss an algorithmic implementation of our approach.
Section 7 reports some experimental results. Section 8 concludes the paper.

2 Assumptions and preliminary definitions

We consider the data holder’s table to be a private table PT where each tuple refers to a different entity
(individual, organization, and so on). From the private table PT, the data holder constructs a table which is
to be an anonymous release of PT. For the sake of simplicity, we will subsequently refer to the privacy and re-
identification of individuals in cases equally applicable to other entities. We assume that all explicit identifiers
(e.g., names, SSNs, and addresses) are either encrypted or suppressed, and we therefore ignore them in the
remainder of this paper. Borrowing the terminology from [6], we call the combination of characteristics on
which linking can be enforced quasi-identifiers. Quasi-identifiers must therefore be protected. They are
defined as follows.

Definition 2.1 (Quasi-identifier) Let T'(A4,..., A,) be a table. A quasi-identifier of T is a set of at-
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tributes {A;,...,A;} C{A1,..., A,} whose release must be controlled.

t[A;, ..., Aj] denotes the sequence of the values of A;,...,A; in t, T(A;,...,A;) denotes the projection,
maintaining duplicate tuples, of attributes A4;,...,A4; in T. Also, Qly denotes the set of quasi-identifiers
associated with 7', and |T'| denotes cardinality, that is, the number of tuples in 7'

Our goal is to allow the release of information in the table while ensuring the anonymity of the individuals.
The anonymity constraint requires released information to indistinctly relate to at least a given number k of
individuals, where k is typically set by the data holder, as stated by the following requirement.

Given a table T'(Ay,...,A,,), a subset of attributes {4,,..., A;} C{A4,...,A,}, and a tuple t € T,

Definition 2.2 (k-anonymity requirement) Fach release of data must be such that every combination
of values of quasi-identifiers can be indistinctly matched to at least k individuals.

Adherence to the anonymity requirement necessitates knowing how many individuals each released tuple
matches. This can be done by explicitly linking the released data with externally available data. This is
obviously an impossible task for the data holder. Although we can assume that the data holder knows
which attributes may appear in external tables, and therefore what constitutes quasi-identifiers, the specific
values of data in external knowledge cannot be assumed. The key to satisfying the k-anonymity requirement,
therefore, is to translate the requirement in terms of the released data themselves. In order to do that, we
require the following assumption to hold.

Assumption 2.1 All attributes in table PT which are to be released and which are externally available in
combination (i.e., appearing together in an external table or in possible joins between external tables) ' to a
data recipient are defined in a quasi-dentifier associated with PT.

Although this is not a trivial assumption its enforcement is possible. The data holder estimates which
attributes might be used to link with outside knowledge; this of course forms the basis for a quasi-identifier.
While the expectation of this knowledge is somewhat reasonable for publicly available data, we recognize that
there are far too many sources of semi public and private information such as pharmacy records, longitudinal

' A universal relation combining external tables can be imagined [20].



studies, financial records, survey responses, occupational lists, and membership lists, to account a priori for
all linking possibilities [18]. Suppose the choice of attributes for a quasi-identifier is incorrect; that is, the
data holder misjudges which attributes are sensitive for linking. In this case, the released data may be less
anonymous than what was required, and as a result, individuals may be more easily identified. Sweeney [18]
examines this risk and shows that it cannot be perfectly resolved by the data holder since the data holder
cannot always know what each recipient of the data knows. [18] poses solutions that reside in policies, laws,
and contracts. In the remainder of this work, we assume that proper quasi-identifiers have been recognized.
We introduce the definition of k-anonymity for a table as follows.

Definition 2.3 (k-anonymity) Let T(Aq,...,A,) be a table and Qlr be the quasi-identifiers associated
with it. T s said to satisfy k-anonymity iff for each quasi-identifier QI € Qlp each sequence of values in
T[QI] appears at least with k occurrences in T[QI].

Under Assumption 2.1, and under the hypothesis that the privately stored table contains at most one
tuple for each identity to be protected (i.e., to whom a quasi-identifier refers), k-anonymity of a released
table represents a sufficient condition for the satisfaction of the k-anonymity requirement. In other words,
a table satisfying Definition 2.3 for a given, k satisfies the k-anonymity requirement for such a k. Consider
a quasi-identifier QI; if Definition 2.3 is satisfied, each tuple in PT[QI] has at least k occurrences. Since
the population of the private table is a subset of the population of the outside world, there will be at least
k individuals in the outside world matching these values. Also, since all attributes available outside in
combination are included in @I, no additional attributes can be joint to QI to reduce the cardinality of
such a set. (Note also that any subset of the attributes in QI will refer to k' > k individuals.) To illustrate,
consider the situation exemplified in Figure 1 but assume that the released data contained two occurrences
of the sequence white, 09/15/64, female, 02142, widow. Then at least two individuals matching such
occurrences will exist in the voter list (or in the table combining the voter list with all other external tables),
and it will not be possible for the data recipient to determine which of the two medical records associated
with these values of the quasi-identifier belong to which of the two individuals. Since k-anonymity of 2 was
provided in the release, each medical record could indistinctly belong to at least two individuals.

Given the assumption and definitions above, and given a private table PT to be released, we focus on
the problem of producing a version of PT which satisfies k-anonymity.

3 Generalizing data

Our first approach to providing k-anonymity is based on the definition and use of generalization relationships
between domains and between values that attributes can assume.

3.1 Generalization relationships

In a classical relational database system, domains are used to describe the set of values that attributes
assume. For example, there might be a ZIP code domain, a number domain, and a string domain. We
extend this notion of a domain to make it easier to describe how to generalize the values of an attribute. In
the original database, where every value is as specific as possible, every attribute is in the ground domain.
For example, 02139 is in the ground ZIP code domain, Zy. To achieve k-anonymity, we can make the ZIP
code less informative. We do this by saying that there is a more general, less specific, domain that can be
used to describe ZIP codes, Z;, in which the last digit has been replaced by a 0. There is also a mapping from
Zo to Zp, such as 02139 — 02130. This mapping between domains is stated by means of a generalization
relationship, which represents a partial order <p on the set Dom of domains, and which is required to
satisfy the following conditions: (1) each domain D; has at most one direct generalized domain, and (2) all



2> = {02100} 02100

ZT
T = {02130, 02140} 02130 02140 T = {person} /Pe;fm\
Zy = {02138, 20239, 02141, 02142} 02138 02139 02141 02142 Eg = {asian, black, caucasian} asian black caucasian

DGHz,, VGHz,, DGHg, VGHg,
Mo = {not_released} not_released
/\
M; = {once_married, never_married} once_married never_married E; = {not_released} not_released
T | VN
Mg = {married, divorced, widow, single} marA:how single Ep = {male, female } male female
DGHy,g VGHy, DGHg, VGHq,

Figure 2: Examples of domain and value generalization hierarchies

maximal elements of Dom are singleton.? The definition of this generalization implies the existence, for each
domain D € Dom, of a hierarchy, which we term the domain generalization hierarchy DGHp. Since
generalized values can be used in place of more specific ones, it is important that all domains in a hierarchy
be compatible. Compatibility can be ensured by using the same storage representation form for all domains
in a generalization hierarchy. A walue generalization relationship, partial order <y, is also defined which
associates with each value v; in a domain D; a unique value in domain D; direct generalization of D;. Such
a relationship implies the existence, for each domain D, of a value generalization hierarchy VGH,.

Example 3.1 Figure 2 illustrates an example of domain and value generalization hierarchies for domain
Zy representing zip-codes of the Cambridge, MA, area, Eg representing ethnicities, My representing marital
status, and Gy representing gender.

In the remainder of this paper we will often refer to a domain or value generalization hierarchy in terms
of the graph representing all and only the direct generalization relationships between the elements in it (i.e.,
implied generalization relationships do not appear as arcs in the graph). We will use the term hierarchy
interchangeably to denote either a partially ordered set or the graph representing the set and all the direct
generalization relationships between its elements. We will explicitly refer to the ordered set or to the graph
when it is not otherwise clear from context.

Also, since we will be dealing with sets of attributes, it is useful to visualize the generalization relationship
and hierarchies in terms of tuples composed of elements of Dom or of their values. Given a tuple DT =
(Dy,...,Dy) such that D; € Dom, i =1,...,n, we define the domain generalization hierarchy of DT as
DGHpr = DGHp, x ... x DGHp, , assuming that the Cartesian product is ordered by imposing coordinate-
wise order [7]. DGHpr defines a lattice whose minimal element is DT. The generalization hierarchy of
a domain tuple DT defines the different ways in which DT can be generalized. In particular, each path
from DT to the unique maximal element of DGHpp in the graph describing DGHpp defines a possible
alternative path that can be followed in the generalization process. We refer to the set of nodes in each of
such paths together with the generalization relationships between them as a generalization strategy for
DGHpr. Figure 3 illustrates the domain generalization hierarchy DGHg, z, where the domain generalization
hierarchies of Eg and Z; are as illustrated in Figure 2.

2The motivation behind condition 2 is to ensure that all values in each domain can be eventually generalized to a
single value.



(E1,Z2) (E1,22) (E1,Z2) (E1,22)

(E1.21) (Eo,Z2) (E1,21) (E1,21) (Eo;22)

(E1.Z0) (Eg,21) (E1,20) (Eg,21) (Eg,21)

(Eg., Zo) (Eg, Zo) (Eg,20) (Eg, Zg)
DGHp GS1 GSs GS3

Figure 3: Domain generalization hierarchy DGH g and strategies for DT = (Eg, Zg)

[ EthiEy | ZIP:z | EthE; | ZIP:Z EthE; | ZIP:Z; [(Ethig, | ZIP:Zy | [(Ethig, | ZIP.Z; |
asian 02138 person 02138 person 02130 asian 02100 asian 02130
asian 02139 person 02139 person 02130 asian 02100 asian 02130
asian 02141 person 02141 person 02140 asian 02100 asian 02140
asian 02142 person 02142 person 02140 asian 02100 asian 02140
black 02138 person 02138 person 02130 black 02100 black 02130
black 02139 person 02139 person 02130 black 02100 black 02130
black 02141 person 02141 person 02140 black 02100 black 02140
black 02142 person 02142 person 02140 black 02100 black 02140
white 02138 person 02138 person 02130 white 02100 white 02130
white 02139 person 02139 person 02130 white 02100 white 02130
white 02141 person 02141 person 02140 white 02100 white 02140
white 02142 person 02142 person 02140 white 02100 white 02140

PT GT0) GTpi) GTo,2y GTpo]

Figure 4: Examples of generalized tables for PT

3.2 Generalized table and minimal generalization

Given a private table PT, our first approach to provide k-anonymity consists of generalizing the values stored
in the table. Intuitively, attribute values stored in the private table can be substituted, upon release, with
generalized values. Since multiple values can map to a single generalized value, generalization may decrease
the number of distinct tuples, thereby possibly increasing the size of the clusters containing tuples with the
same values. We perform generalization at the attribute level. Generalizing an attribute means substituting
its values with corresponding values from a more general domain. Generalization at the attribute level
ensures that all values of an attribute belong to the same domain. However, as a result of the generalization
process, the domain of an attribute can change. In the following, dom(A;,T') denotes the domain of attribute
A; in table T. D; = dom(A;,PT) denotes the domain associated with attribute A; in the private table PT.

Definition 3.1 (Generalized Table) Let T;(A:,...,A,) and Tj(A1,...,A,) be two tables defined on the
same set of attributes. T is said to be a generalization of T;, written T; < T}, iff

1Ty = [T
2.Vz=1,...,n:dom(A.,T;) <p dom(A.,Tj)
3. It is possible to define a bijective mapping between T; and T} that associates each tuples t; and t; such

that tz[Az] SV tj [Az]

Definition 3.1 states that a table T} is a generalization of a table Tj, defined on the same attributes,
iff (1) T; and T; have the same number of tuples, (2) the domain of each attribute in Tj is equal to or a



(E1,Z2) [1:2]

(E1421) (Eo 4 22) (1] [0,2]
(B1.20) (Bg, 21) [10] [0:1]
(Bo,20) [0.0]

DGH (5, 2,)

Figure 5: Hierarchy DGH g, 7,y and corresponding lattice on distance vectors

generalization of the domain of the attribute in T}, and (3) each tuple ¢; in T; has a corresponding tuple t;
in T; (and vice versa) such that the value for each attribute in ¢; is equal to or a generalization of the value
of the corresponding attribute in ¢;.

Example 3.2 Consider the table PT illustrated in Figure 4 and the domain and value generalization hierar-
chies for Eg and Zg illustrated in Figure 2. The remaining four tables in Figure 4 are all possible generalized
tables for PT, but the topmost one generalizes each tuple to (person,02100). For the clarity of the example,
each table reports the domain for each attribute in the table. With respect to k-anonymity, GTo 1) satisfies
k-anonymity for k = 1,2; GTyg satisfies k-anonymity for k = 1,2,3; GTgy satisfies k-anonymity for
k=1,...,4, and GTy 1) satisfies k-anonymity for k =1,...,6.

Given a table, different possible generalizations exist. Not all generalizations, however, can be considered
equally satisfactory. For instance, the trivial generalization bringing each attribute to the highest possible
level of generalization, thus collapsing all tuples in T' to the same list of values, provides k-anonymity at
the price of a strong generalization of the data. Such extreme generalization is not needed if a more specific
table (i.e., containing more specific values) exists which satisfies k-anonymity. This concept is captured by
the definition of k-minimal generalization. To introduce it we first introduce the notion of distance vector.

Definition 3.2 (Distance vector) LetT;(A:1,...,Ay) and T;(Aq, ..., Ay) be two tables such that T; < Tj.
The distance vector of T} from T; is the vector DV; ; = [d1, ..., d,] where each d is the length of the unique
path between D =dom(A.,T;) and dom(A,,T;) in the domain generalization hierarchy DGHp.

Example 3.3 Consider table PT and its generalized tables illustrated in Figure 4. The distance vectors
between PT and its different generalizations are the vectors appearing as a subscript of each table.

Given two distance vectors DV = [dy,...,d,] and DV’ = [d},...,d}], DV < DV' iff d; < d} for all i =
1,...,n; DV < DV’ iff DV < DV’ and DV # DV'. A generalization hierarchy for a domain tuple can be seen
as a hierarchy (lattice) on the corresponding distance vectors. For instance, Figure 5 illustrates the lattice
representing the < relationship between the distance vectors corresponding to the possible generalization of
(Eo,Zo)-

We can now introduce the definition of k-minimal generalization.

Definition 3.3 (k-minimal generalization) Let T; and T} be two tables such that T; < T;. Tj is said to
be a k-minimal generalization of T; iff

1. Tj satisfies k-anonymity



[ Ethn

DOB | Sex | ZIP | Status |

asian 09/27/64 female 02139 divorced
asian 09/30/64 female 02139 divorced
asian 04/18/64 male 02139 married
asian 04/15/64 male 02139 married
black 03/13/63 male 02138 married
black 03/18/63 male 02138 married
black 09/13/64 female 02141 married
black 09/07/64 female 02141 married
white 05/14/61 male 02138 single
white 05/08/61 male 02138 single
white 09/15/61 female 02142 widow
PT

[Ethn | DOB | Sex | ZIP | Status | [Ethn | DOB | Sex | ZIP_ | Status
asian 64 not_rel 02100 not_rel pers 60-65 female 02130 been
asian 64 not._rel 02100 not._rel pers 60-65 female 02130 been
asian 64 not._rel 02100 not._rel pers 60-65 male 02130 been
asian 64 not_rel 02100 not_rel pers 60-65 male 02130 been
black 63 not_rel 02100 not._rel pers 60-65 male 02130 been
black 63 not._rel 02100 not._rel pers 60-65 male 02130 been
black 64 not._rel 02100 not._rel pers 60-65 female 02140 been
black 64 not_rel 02100 not_rel pers 60-65 female 02140 been
white 61 not._rel 02100 not._rel pers 60-65 male 02130 never
white 61 not._rel 02100 not._rel pers 60-65 male 02130 never
white 61 not_rel 02100 not_rel pers 60-65 female 02140 been

GTo,2,1,2,2] GTi1,3,01,1]

Figure 6: An example of table PT and its minimal generalizations

2. AT, :T; <T.,T. satisfies k-anonymity, and DV; , < DV ;.

Intuitively, a generalization 7} is minimal iff there does not exist another generalization T, satisfying k-
anonymity which is dominated by T} in the domain generalization hierarchy of (D1, ..., D,) (or, equivalently,
in the corresponding lattice of distance vectors). If this were the case T} would itself be a generalization for
T.. Note also that a table can be a minimal generalization of itself if the table already achieved k-anonymity.

Example 3.4 Consider table PT and its generalized tables illustrated in Figure 4. Assume QQI = (Eth, ZIP)
to be a quasi-identifier. It is easy to see that for k = 2 there exist two k-minimal generalizations, which are
GTp 0 and GTg ). Table GTg ), which satisfies the anonymity requirements, is not minimal since it is a
generalization of GTg ). Analogously GTy 1) cannot be minimal, being a generalization of both GT(y o and
GTio,1). There are also only two k-minimal generalized tables for k=3, which are GT(1 o) and GTg ).

Note that since k-anonymity requires the existence of k-occurrences for each sequence of values only for
quasi-identifiers, for every minimal generalization T}, DV; ;[d.] = 0 for all attributes A, which do not belong
to any quasi-identifier.

4 Suppressing data

In Section 3 we discussed how, given a private table PT, a generalized table can be produced which releases
a more general version of the data in PT and which satisfies a k-anonymity constraint. Generalization has
the advantage of allowing release of all the single tuples in the table, although in a more general form. Here,
we illustrate a complementary approach to providing k-anonymity, which is suppression. Suppressing means
to remove data from the table so that they are not released and as a disclosure control technique is not
new [5, 21]. We apply suppression at the tuple level, that is, a tuple can be suppressed only in its entirety.
Suppression is used to “moderate” the generalization process when a limited number of outliers (that is,



[ Ethn | DOB [ Sex [ Zz1P [ Status | [ Ethn [ DOB [ Sex [ z1P [ Status |
asian 09/27/64 female 02139 divorced asian 64 female 02139 divorced
asian 09/30/64 female 02139 divorced asian 64 female 02139 divorced
asian 04/18/64 male 02139 married asian 64 male 02139 married
asian 04/15/64 male 02139 married asian 64 male 02139 married
black 03/13/63 male 02138 married black 63 male 02138 married
black 03/18/63 male 02138 married black 63 male 02138 married
black 09/13/64 female 02141 married black 64 female 02141 married
black 09/07/64 female 02141 married black 64 female 02141 married
white 05/14/61 male 02138 single white 61 male 02138 single
white 05/08/61 male 02138 single white 61 male 02138 single

PT GT0,2,0,0,0]

Figure 7: An example of table PT and its minimal generalization

[ EthiEy | ZIP:z | Eth:E; ZIP 7 EthEy | ZIP:Z; [(Ethig, | ZIP:Zy | [(EthiE; | ZTPZ; |
asian 02138 person 02138 asian 02130 asian 02100 person 02130
asian 02138 person 02138 asian 02130 asian 02100 person 02130
asian 02142 person 02142 asian 02140 asian 02100 person 02140
asian 02142 person 02142 asian 02140 asian 02100 person 02140
black 02138 person 02138 | black 02130 | black 02100 person 02130
black 02141 [ person 02141 | black 02140 black 02100 person 02140
black 02142 person 02142 black 02140 black 02100 person 02140
white 02138 person 02138 | white 02130 | | white 02100 | person 02130

PT GTp GTyo,1y GTo,2) Gl

Figure 8: Examples of generalized tables for PT

tuples with less that k& occurrences) would force a great amount of generalization. To clarify, consider the
table illustrated in Figure 1, whose projection on the considered quasi-identifier is illustrated in Figure 6
and suppose k-anonymity with & = 2 is to be provided. Attribute Date of Birth has a domain date with
the following generalizations: from the specific date (mm/dd/yy) to the month (mm/yy) to the year (yy) to a
5-year interval (e.g., [60-64]) to a 10-year interval (e.g., [60,69]) to a 25-year interval and so on.? Tt is easy
to see that the presence of the last tuple in the table necessitates, for this requirement to be satisfied, two
steps of generalization on Date of Birth, one step of generalization on Zip Code, one step of generalization
on Marital Status, and either one further step on Sex, Zip Code, and Marital Status, or, alternatively,
on Ethnicity and Date of Birth. The two possible minimal generalizations are as illustrated in Figure 6.
In practice, in both cases almost all the attributes must be generalized. It can be easily seen, at the same
time, that had this last tuple not been present k-anonymity could have been simply achieved by two steps of
generalization on attribute Date of Birth, as illustrated in Figure 7. Suppressing the tuple would in this
case permit enforcement of less generalization.

In illustrating how suppression interplays with generalization to provide k-anonymity, we begin by re-
stating the definition of generalized table as follows.
Definition 4.1 (Generalized Table - with suppression) Let T;(A1,..., A,) and T (A4, . . ., A,) be two

3 3

tables defined on the same set of attributes. T; is said to be a generalization of T;, written T; < T, iff
1. |T5] < |13
2.Vz=1,...,n:dom(A.,T;) <p dom(A.,Tj)

3. It is possible to define an injective mapping between T; and T that associates tuplest; € T; andt; € Tj
such that t;[A;] <v t;[A.].

®Note that although generalization may seem to change the format of the data, compatibility can be assured by
using the same representation form. For instance, the month can be represented always as a specific day. This is
actually the trick that we used in our application of generalization.
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Eth:E ZIP:Z
0 0

Eth:E; [ ZIP:Zg | [ Ethigg | ZIP:z; | [ Eth:Ey | ZIP:2y

| Eth:Eq | ZIP:Z, |

asian 02138 person 02138 asian 02130 asian 02100 person 02130
asian 02138 person 02138 asian 02130 asian 02100 person 02130
asian 02142 person 02142 asian 02140 asian 02100 person 02140
asian 02142 person 02142 asian 02140 asian 02100 person 02140
black 02138 person 02138 black 02100 person 02130
black 02141 black 02140 black 02100 person 02140
black 02142 person 02142 black 02140 black 02100 person 02140
white 02138 person 02138 person 02130
PT GT[LO] GT[071] GT[072] GT[L]]

Figure 9: Examples of generalized tables for PT

The definition above differs from Definition 3.1 since it allows tuples appearing in T; not to have any
corresponding generalized tuple in 7. Intuitively, tuples in 7; not having any correspondent in 7} are tuples
which have been suppressed.

Definition 4.1 allows any amount of suppression in a generalized table. Obviously, we are not interested
in tables that suppress more tuples than necessary to achieve k-anonymity at a given level of generalization.
This is captured by the following definition.

Definition 4.2 (Minimal required suppression) Let T; be a table and T; a generalization of T; satis-
fying k-anonymity. T} is said to enforce minimal required suppression iff AT, such that T; < T,,DV;, =
DV, ;,|T;| < |T.| and T, satisfies k-anonymity.

Example 4.1 Consider the table PT and its generalizations illustrated in Figure 8. The tuples written in
bold face and marked with double lines in each table are the tuples that must be suppressed to achieve k-
anonymity of 2. Suppression of a subset of them would not reach the required anonymity. Suppression of
any superset would be unnecessary (not satisfying minimal required suppression,).

Allowing tuples to be suppressed typically affords more tables per level of generalization. It is trivial to
prove, however, that for each possible distance vector, the generalized table satisfying a k-anonymity con-
straint by enforcing minimal suppression is unique. This table is obtained by first applying the generalization
described by the distance vector and then removing all and only the tuples that appear with fewer than &
occurrences.

In the remainder of this paper we assume the condition stated in Definition 4.2 to be satisfied, that is, all
generalizations that we consider enforce minimal required suppression. Hence, in the following, within the
context of a k-anonymity constraint, when referring to the generalization at a given distance vector we will
intend the unique generalization for that distance vector which satisfies the k-anonymity constraint enforcing
minimal required suppression. To illustrate, consider the table PT in Figure 8; with respect to k-anonymity
with k=2, we would refer to its generalizations as illustrated in Figure 9. (Note that for sake of clarity, we
have left an empty row to correspond to each removed tuple.)

Generalization and suppression are two different approaches to obtaining, from a given table, a table
which satisfies k-anonymity. It is trivial to note that the two approaches produce the best results when jointly
applied. For instance, we have already noticed how, with respect to the table in Figure 1, generalization
alone is unsatisfactory (see Figure 6). Suppression alone, on the other side, would require suppression of all
tuples in the table. Joint application of the two techniques allows, instead, the release of a table like the
one in Figure 7. The question is therefore whether it is better to generalize, at the cost of less precision
in the data, or to suppress, at the cost of completeness. From observations of real-life applications and
requirements [16], we assume the following. We consider an acceptable suppression threshold MaxSup, as
specified, stating the maximum number of suppressed tuples that is considered acceptable. Within this
acceptable threshold, suppression is considered preferable to generalization (in other words, it is better to
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suppress more tuples than to enforce more generalization). The reason for this is that suppression affects
single tuples whereas generalization modifies all values associated with an attribute, thus affecting all tuples
in the table. Tables which enforce suppression beyond MaxSup are considered unacceptable.

Given these assumptions, we can now restate the definition of k-minimal generalization taking suppression
into consideration.

Definition 4.3 (k-minimal generalization - with suppression) Let T; and T; be two tables such that
T; < Tj and let MaxSup be the specified threshold of acceptable suppression. T is said to be a k-minimal
generalization of a table T; iff

1. T} satisfies k-anonymity
2. |Tl‘ - |TJ‘ S MaxSup
3. AT, :T; <T,,T, satisfies conditions 1 and 2, and DV; . < DV ;.

Intuitively, generalization T} is k-minimal iff it satisfies k-anonymity, it does not enforce more suppression
than it is allowed, and there does not exist another generalization satisfying these conditions with a distance
vector smaller than that of T, nor does there exist another table with the same level of generalization
satisfying these conditions with less suppression.

Example 4.2 Consider the private table PT illustrated in Figure 9 and suppose k-anonymity with k = 2
is required. The possible generalizations (but the topmost one collapsing every tuple to (person,02100)) are
illustrated in Figure 9. Depending on the acceptable suppression threshold, the following generalizations are
considered minimal:

MaxSup = 0: GT g (GTp1,0,GTo,1), or GTyg o) suppress more tuple than it is allowed, GTy o is not
minimal because of GTyy 17);

MaxSup = 1: GTy o and GTjg9  (GTg1) suppresses more tuple than it is allowed, GTjy 1) is not minimal
because of GTy o) and GTyy o) is not minimal because of GTpy o) and GTg 9));

MaxSup > 2: GTyy ) and GTg g (GTg,9) is mot minimal because of GTjo 17, GTj1,1] and GTy o) are not
minimal because of GTpy g and GTg ).

5 Preferences

It is clear from Section 4 that there may be more than one minimal generalization for a given table, suppres-
sion threshold and k-anonymity constraint. This is completely legitimate since the definition of “minimal”
only captures the concept that the least amount of generalization and suppression necessary to achieve k-
anonymity is enforced. However, multiple solutions may exist which satisfy this condition. Which of the
solutions is to be preferred depends on subjective measures and preferences of the data recipient. For in-
stance, depending on the use of the released data, it may be preferable to generalize some attributes instead
of others. We outline here some simple preference policies that can be applied in choosing a preferred min-
imal generalization. To do that, we first introduce two distance measures defined between tables: absolute
and relative distance. Let T;(Aq,...,A,) be a table and Tj(A4,. .., Ay,) be one of its generalizations with
distance vector DV; j = [di,...,d,]. The absolute distance of T; from T;, written Absdist; ;, is the sum of
the distances for each attribute. Formally, Absdist; ; = > | d;. The relative distance of T} from T}, written
Reldist; ;, is the sum of the “relative” distance for each attribute, where the relative distance of each attribute
is obtained by dividing the distance over the total height of the hierarchy. Formally, Reldist; ; = 22:1 Z—f,
where h, is the height of the domain generalization hierarchy of dom(A,,T;).
Given those distance measures we can outline the following basic preference policies:
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Minimum absolute distance prefers the generalization(s) that has a smaller absolute distance, that is,
with a smaller total number of generalization steps (regardless of the hierarchies on which they have
been taken).

Minimum relative distance prefers the generalization(s) that has a smaller relative distance, that is,
that minimizes the total number of relative steps, that is, considered with respect to the height of the
hierarchy on which they are taken.

Maximum distribution prefers the generalization(s) that contains the greatest number of distinct tuples.

Minimum suppression prefers the generalization(s) that suppresses less, that is, that contains the greater
number of tuples.

Example 5.1 Consider Ezample 4.2. Suppose MaxSup = 1. Minimal generalizations are GT[y o) and GTg 9.
Under minimum absolute distance, GT(y o] is preferred. Under minimum relative distance, mazimum distribu-
tion, and minimum suppression policies, the two generalizations are equally preferable. Suppose MaxSup = 2.
Minimal generalizations are GT(y o) and GTg ). Under the minimum absolute distance policy, the two gen-
eralizations are equally preferable. Under the minimum suppression policy, GTy o) is preferred. Under the
minimum relative distance and the mazimum distribution policies, GT[ 1) is preferred.

The list above is obviously not complete and there remain additional preference policies that could be
applied; the best one to use, of course, depends on the specific use for the released data. Examination of an
exhaustive set of possible policies is outside the scope of this paper. The choice of a specific preference policy
is done by the requester at the time of access [18]. Different preference policies can be applied to different
quasi-identifiers in the same released data.

6 Computing a preferred generalization

We have defined the concept of preferred k-minimal generalization corresponding to a given private table.
Here, we illustrate an approach to computing such a generalization. Before discussing the algorithm we make
some observations clarifying the problem of finding a minimal generalization and its complexity. We use the
term outlier to refer to a tuple with fewer than k occurrences, where k is the anonymity constraint required.

First of all, given that the k-anonymity property is required only for attributes in quasi-identifiers,
we consider the generalization of each specific quasi-identifier within table PT independently. Instead of
considering the whole table PT to be generalized, we consider its projection PT[QI], keeping duplicates, on
the attributes of a quasi-identifier Q1. The generalized table PT is obtained by enforcing generalization for
each quasi-identifier QI € Qlpt. The correctness of the combination of the generalizations independently
produced for each quasi-identifier is ensured by the fact that the definition of a generalized table requires
correspondence of values across whole tuples and by the fact that the quasi-identifiers of a table are disjoint.

In Section 3 we illustrated the concepts of a generalization hierarchy and strategies for a domain tuple.
Given a quasi-identifier QI = (A4,..., A,), the corresponding domain hierarchy on DT = (D.,...,D,)
pictures all the possible generalizations and their relationships. Each path (strategy) in it defines a different
way in which generalization can be applied. With respect to a strategy, we could define the concept of
local minimal generalization as the generalization that is minimal with respect to the set of generalizations
in the strategy (intuitively the first found in the path from the bottom element DT to the top element).
Each k-minimal generalization is locally minimal with respect to some strategy, as stated by the following
theorem.

4This last constraint can be removed provided that generalization of non-disjoint quasi-identifiers be executed
serially.
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Theorem 6.1 Let T'(A,,...,A,) = PT[QI] be the table to be generalized and let DT = (D1, ..., D,) be the
tuple where D, = dom(A,,T), z=1,...,n, be a table to be generalized. Every k-minimal generalization of
T; is a local minimal generalization for some strateqy of DGHpr.

PROOF. (sketch) By contradiction. Suppose Tj is k-minimal but is not locally minimal with respect to
any strategy. Then, there exists a strategy containing T such that there exists another generalization T,
dominated by 7} in this strategy which satisfies k-anonymity by suppressing no more tuples than what is
allowed. Hence, T, satisfies conditions 1 and 2 of Definition 4.3. Moreover, since T, is dominated by 7},
DV, . < DV; ;. Hence, T; cannot be minimal, which contradicts the assumption. |

Since strategies are not disjoint, the converse is not necessarily true, that is, a local minimal generalization
with respect to a strategy may not correspond to a k-minimal generalization.

From Theorem 6.1, following each generalization strategy from the domain tuple to the maximal element
of the hierarchy would then reveal all the local minimal generalizations from which the k-minimal general-
izations can be selected and an eventual preferred generalization chosen. (The consideration of preferences
implies that we cannot stop the search at the first generalization found that is known to be k-minimal.)

However, this process is much too costly because of the high number of strategies which should be followed.
(hi+...4+hn)!

It can be proved that the number of different strategies for a domain tuple DT = (D, ..., D) is RIS,

where each h; is the length of the path from D; to the top domain in DGHp,.

In the implementation of our approach we have realized an algorithm that computes a preferred gen-
eralization without needing to follow all the strategies and computing the generalizations. The algorithm
makes use of the concept of distance vector between tuples. Let T be a table and x,y € T two tuples such
that ¢ = (v],...,v;,) and y = (v{,...,v,) where each v}, v} is a value in domain D;. The distance vector
between z and y is the vector V, , = [d1, ..., dy] where d; is the length of the paths from v} and v}’ to their
closest common ancestor in the value generalization hierarchy VGHp,. For instance, with reference to the
PT illustrated in Figure 4, the distance between (asian,02139) and (black,02139) is [1,0]. Intuitively, the
distance between two tuples x and y in table 7T; is the distance vector between T; and the table 7T}, with
T; < T; where the domains of the attribute in 7; are the most specific domains for which 2 and y generalize
to the same tuple t.

The following theorem states the relationship between distance vectors between tuples in a table and a

minimal generalization for the table.

Theorem 6.2 Let T;(A1, ..., An) = PT[QI] and T; be two tables such that T; < Tj. If T; is k-minimal then
DV, ; =V, for some tuples x,y in T; such that either x or y has a number of occurrences smaller than k.

PROOF. (sketch) By contradiction. Suppose that a k-minimal generalization T} exists such that DV, ;
does not satisfy the condition above. Let DV, ; = [d1,...,d,]. Consider a strategy containing a generalization
with that distance vector (there will be more than one of such strategies, and which one is considered is not
important). Consider the different generalization steps executed according to the strategy, from the bottom
going up, arriving at the generalization corresponding to T;. Since no outlier is at exact distance [d1, ..., d,)]
from any tuple, no outlier is merged with any tuple at the last step of generalization considered. Then the
generalization directly below T} in the strategy satisfies the same k-anonymity constraint as T; with the same
amount of suppression. Also, by definition of strategy, DV, . < DV, ;. Then, by Definition 4.3, T; cannot be

minimal, which contradicts the assumption. |

According to Theorem 6.2 the distance vector of a minimal generalization falls within the set of the
vectors between the outliers and other tuples in the table. This property is exploited by the generalization
algorithm to reduce the number of generalizations to be considered.

The algorithm works as follows. Let PT[QI] be the projection of PT over quasi-identifier QI. First, all
distinct tuples in PT[QI] are determined together with the number of their occurrences. Then, the distance
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vectors between each outlier and every tuple in the table is computed. Then, a DAG with, as nodes, all
distance vectors found is constructed. There is an arc from each vector to all the smallest vector dominating
it in the set. Intuitively, the DAG corresponds to a “summary” of the strategies to be considered (not
all strategies may be represented, and not all generalizations of a strategy may be present). Each path in
the DAG is then followed from the bottom up until a minimal local generalization is found. The algorithm
determines if a generalization is locally minimal simply by controlling how the occurrences of the tuples would
combine (on the basis of the distance table constructed at the beginning), without actually performing the
generalization. When a local generalization is found, another path is followed. As paths may be not disjoint,
the algorithm keeps track of generalizations that have been considered so as to stop on a path when it runs
into another path on which a local minimum has already been found. Once all possible paths have been
examined, the evaluation of the distance vectors allows the determination of the generalizations, among those
found, which are k-minimal. Among them, a preferred generalization to be computed is then determined on
the basis of the distance vectors and of how the occurrences of tuples would combine.

The characteristics that reduce the computation cost are therefore that (1) the computation of the
distance vectors between tuples greatly reduces the number of generalizations to be considered; (2) gener-
alizations are not actually computed but foreseen by looking at how the occurrences of the tuples would
combine; (3) the fact that the algorithm keeps track of evaluated generalizations allows it to stop evaluation
on a path whenever it crosses a path already evaluated.

The correctness of the algorithm descends directly from Theorems 6.1 and 6.2.

The necessary and sufficient condition for a table T to satisfy k-anonymity is that the cardinality of the
table be at least k, and only in this case, therefore, is the algorithm applied. This is stated by the following
theorem.

Theorem 6.3 Let T be a table, MaxSup < |T'| be the acceptable suppression threshold, and k be a natural
number. If |T| > k, then there exists at least a k-minimal generalization for T. If |T| < k there are no
non-empty k-minimal generalizations for T.

PROOF. (sketch) Suppose |T| > k. Consider the generalization generalizing each tuple to the topmost
possible domain. Since maximal elements of Dom are singleton, all values of an attribute collapse to the same
value. Hence, the generalization will contain |T'| occurrences of the same tuple. Since |T'| > k, it satisfies
k-anonymity. Suppose |T'| < k, no generalization can satisfy k-anonymity, which can be reached only by
suppressing all the tuples in 7. |

7 Application of the approach: some experimental results

We counstructed a computer program that produces tables adhering to k-minimal generalizations given specific
thresholds of suppression. The program was written in C++, using ODBC to interface with an SQL server,
which in turn accessed a medical database. Our goal was to model an actual release and to measure the quality
of the released data. Most states have legislative mandates to collect medical data from hospitals, so we
collapsed the original medical database into a single table consistent with the format and primary attributes
the National Association of Health Data Organizations recommends that state agencies collect [14]. Each
tuple represents one patient, and each patient is unique. The data contained medical records for 265 patients.
Figure 10 itemizes the attributes used; the table is considered de-identified because it contains no explicit
identifying information such as name or address. As discussed earlier, ZIP code, date of birth, and gender can
be linked to population registers that are publicly available in order to re-identify patients [18]. Therefore,
the quasi-identifier Q1 {ZIP, birth date, gender, ethnicity} was considered. Each tuple within QI was
found to be unique.

The top table in Figure 10 is a sample of the original data, and the lower table illustrates a k-minimal
generalization of that table given a threshold of suppression. The ZIP field has been generalized to the
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| Attribute | # distinct values | min frequency | max frequency | median frequency | comments

ZIP 66 1 24 2

Birth year 23 1 31 10 23 yr range
Gender 2 96 169 132

Ethnicity 4 6 211 24

Table 1: Distribution of values in the table considered in the experiment

first 3 digits, and date of birth to the year. The tuple with the unusual ZIP code of 32030-1057 has been
suppressed. The recipient of the data is informed of the levels of generalizations and how many tuples were
suppressed. (Note: The default value for month is January and for day is the 1st when dates are generalized.
This is done for practical considerations that preserve the data type originally assigned to the attribute (see
Section 3).)

Table 1 itemizes the basic distribution of values within the attributes. ZIP codes were stored in the
full 9-digit form, with a generalization hierarchy replacing rightmost digits with 0, of 10 levels. Birth dates
were generalized first to the month, then 1-year, 5-year, 10-year, 20-year, and 100-year periods. A two-level
hierarchy was considered for gender and ethnicity (see Figure 2). The product of the number of possible
domains for each attribute gives the total number of possible generalizations, which is 280.

The program constructed a clique where each node was a tuple and the edges were weighted by distance
vectors between adjacent tuples. Reading these vectors from the clique, the program generated a set of
generalizations to consider. There were 141 generalizations read from the clique, discarding 139 or 50%. For
our tests, we used values of k to be 3, 6, 9, ..., 30 and a maximum suppression threshold of 10% or 27 tuples.

Figure 11 shows the relationship between suppression and generalization within the program in a practical
and realistic application. We measure the loss of data quality due to suppression as the ratio of the number of
tuples suppressed divided by the total number of tuples in the original data. We define the inverse measure
of “completeness”, to determine how much of the data remains, computed as one minus the loss due to
suppression. Generalization also reduces the quality of the data since generalized values are less precise. We
measure the loss due to generalization as the ratio of the level of generalization divided by the total height
of the generalization hierarchy. We term “precision” as the amount of specificity remaining in the data,
computed as one minus the loss due to generalization.

In Charts (A) and (B) of Figure 11 we compare the data quality loss as the k-anonymity requirement
increases. Losses are reported for both generalization and suppression for each attribute as if it were solely
responsible for achieving the k-anonymity requirement. By doing so, we characterize the distribution and
nature of values found in these attributes. Given the distribution of males (96) and females (169) in the data,
the gender attribute itself can achieve these values of k so we see no loss due to generalization or suppression.
On the other hand, there were 258 of 265 distinct birth dates. Clearly, date of birth and ZIP code are the
most discriminating values, so it is not surprising that they must be generalized more than other attributes.
The flat lines on these curves indicate values being somewhat clustered

Charts (C) and (D) of Figure 11 report completeness and precision measurements for the 44 minimal
generalizations found. Basically, generalizations that satisfy smaller values of k appear further to the right
in chart (C), and those generalizations that achieve larger values of k are leftmost. This results from the
observation that the larger the value for k, the more generalization may be required, resulting, of course, in
a loss of precision. It is also not surprising that completeness remains above 0.90 because our suppression
threshold during these tests was 10%. Though not shown in the charts, it can easily be understood that
raising the suppression threshold typically improves precision since more values can be suppressed to achieve
k. Clearly, generalization is expensive to the quality of the data since it is performed across the entire
attribute; every tuple is affected. On the other hand, it remains semantically more useful to have a value
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Figure 10: Example of current release practice and minimally generalized equivalent

Figure 11: Experimental results based on 265 medical records
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present, even if it is a less precise one, than not having any value at all, as is the result of suppression.

From these experiments it is clear that the techniques of generalization and suppression can be used in
practical applications. Of course, protecting against linking involves a loss of data quality in the attributes
that comprise the quasi-identifier, though we have shown that the loss is not severe. These techniques are
clearly most effective when the primary attributes required by the recipient are not the same as the quasi-
identifier that can be used for linking. In the sample medical data shown earlier, researchers, computer
scientists, health economists and others value the information that is not included in the quasi-identifier in
order to develop diagnostic tools, perform retrospective research, and assess hospital costs [18].

8 Conclusions

We have presented an approach to disclosing entity-specific information such that the released table cannot
be reliably linked to external tables. The anonymity requirement is expressed by specifying a quasi-identifier
and a minimum number k of duplicates of each released tuple with respect to the attributes of the quasi-
identifier. The anonymity requirement is achieved by generalizing, and possibly suppressing, information
upon release. We have given the notion of minimal generalization capturing the property that informa-
tion is not generalized more than it is needed to achieve the anonymity requirement. We have discussed
possible preference policies to choose between different minimal generalizations and an algorithm to com-
pute a preferred minimal generalization. Finally, we have illustrated the results of some experiments from
the application of our approach to the release of a medical database containing information regarding 265
patients.

This work represents only a first step toward the definition of a complete framework for information
disclosure control. Many problems are still open. From a modeling point of view, the definition of quasi-
identifiers and of an appropriate size of k£ must be addressed. The quality of generalized data is best when
the attributes most important to the recipient do not belong to any quasi-identifier. For public-use files this
may be acceptable, but determining the quality and usefulness in other settings must be further researched.
From the technical point of view, future work should include the investigation of an efficient algorithm [15]
to enforce the proposed techniques and the consideration of specific queries, of multiple releases over time,
and of data updating, which may allow inference attacks [10, 13].
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