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Abstract— The increased demand for tighter border and
building security has renewed public interest in biometric iden-
tification and verification systems. With fingerprint recognition
being socially stigmatized, hand geometry-based recognizers
have emerged as niche solutions. However, systems currently
available in the marketplace require direct contact with the
device, raising, among others, significant hygiene concerns. In
this paper we introduce a novel approach to hand geometry-
based identification. The proposed method employs Active
Appearance Models to track the hand inside the capture device
and to extract geometry features for identification. The AAM
fitting algorithm runs faster than real-time, enabling robust
system performance. In experiments on a small-scale database
of hand images, the accuracy of our system exceeds 90% using
as little as five features.

I. INTRODUCTION

The increased demand for tighter border and building
security has renewed public interest in biometric systems for
identification (one-to-many matching) and verification (one-
to-one matching). With fingerprint recognition being socially
stigmatized due to its connection to crime scene analysis,
hand geometry-based recognizers have emerged as niche
solutions [7]. However, systems currently available in the
marketplace require usage of physical restraints such as pegs
to guarantee consistent hand positioning. In order to interact
with the system, users therefore have to place their hand
directly onto the device, raising significant hygiene concerns.

In this paper we introduce a novel approach to hand
geometry-based person identification. Our system employs
Active Appearance Models (AAMs [3], [12]) to track the
hands of subjects inside the capturing device. Using the
location of landmark points on the hand determined from the
fitted AAM, we extract distance features for identification.
Unlike the devices currently available on the market, our
system allows subjects to put their hand anywhere in the field
of view of the camera while minimizing physical contact
to the device and thereby eliminating hygiene concerns. In
experiments on a database of 18 subjects the accuracy of our
system exceeds 90% using as little as five features.

This paper is organized as follows. Section II provides an
overview over prior work in the field. Section III describes
our system and all of its components. We introduce the AAM
framework in Section IV and discuss the algorithm used to
fit a model to a new image. In Section V we describe the
hand database that we collected to facilitate development and
testing of our system. Section VI discusses a set of candidate
distance features and a feature consistency measure used to
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determine the most reliable features for inclusion into the
classifier. In Section VII we report the results of model
fitting and classification experiments before we conclude
with discussions and future work in Section VIII.

II. BACKGROUND: HAND GEOMETRY-BASED
BIOMETRIC SYSTEMS

While the biometrics market is dominated by devices
based on fingerprint recognition, hand geometry-based sys-
tems for person verification have been used for many years.
Despite its comparatively small share of the overall bio-
metrics market (10% in 2003 in comparison to 52% for
fingerprint based systems [7]) hand geometry-based sys-
tems are popular for access-control and time-and-attendance
applications [6]. Hand geometry systems measure various
distances on the hand, including the overall length, width
and thickness of the hand as well as the dimensions of
the fingers. Since distances computed on the hand vary
substantially with pose and finger configuration, sensing
devices often use physical restraints to ensure consistent hand
placement. In [8] 5 pegs are used to guide positioning of the
hand. The system then extracts 16 distance features from
the fingers and the hand. Using a database of 50 people,
the authors report a verification rate of over 90% at a false
acceptance rate of 0.01. Using a comparable hardware setup
Sanchez-Reillo et al. employ six pegs to position the hand
in the capture device [13]. The system however extracts 31
features for comparisons. On a small dataset of 200 images
recorded from 20 subjects recognition accuracies between
88% and 97% are reported. While pegs help overall in hand
positioning they also alter the hand shape and fail to prevent
small variations in finger placement (shown in [16]). Systems
proposed more recently therefore employ alternative means
for consistent feature acquisition. [16] uses a flatbed scanner,
requiring subjects to separate the fingers. With the help of
heuristics, landmark points are located on the hand which
serve as reference points to extract five length and eight width
measurements together with the contour of three fingertips.
On a dataset of 288 images recorded from 22 subjects the
system achieves a 89% verification rate at a 2.2% false
acceptance rate. In [11] images are recorded with a digital
camera. The users are instructed to ensure that the back of
their hands touches the device table and that their fingers are
well separated. After extraction of the hand region through
thresholding, the hand position is normalized using the axes
of a fitted ellipse. The system then extracts 16 features. On
a database of 1000 images recorded from 100 users the
best system operating point was achieved at a 5.29% false
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Fig. 1. Overview of the proposed hand-geometry based identifica-
tion system. A video camera records the hand movements in front of
a static background. After hand localization, the AAM hand model
is fitted to the image. The model parameters resulting from the fit
are used to compute geometry measurements of the hand which are
matched against a database of previously recorded measurements.

acceptance rate and 8.34% false rejection rate. In [15] Active
Appearance Models were used for hand appearance based
matching. Good results are reported for both identification
as well as verification settings, however, no details about the
underlying hand database are given.

III. HAND-GEOMETRY BASED IDENTIFICATION SYSTEM

Our system employs a static video camera within an enclo-
sure to acquire image sequences of the hand to be identified.
See Figure 1 for an illustration. Since the background is
static and controlled, we use background subtraction (see
e.g. [2], [17]) to detect the presence of a hand in the field of
view. The position of the centroid of the hand region along
with the approximate scale then serves as initialization point
for the Active Appearance Model fitting algorithm. After a
sufficient fit has been established (as measured by the model
reconstruction error) the AAM fitting algorithm is used to
update the model position in each image. Once the hand
position stabilizes (as determined from the frame-to-frame
model position distance) hand geometry measurements are
extracted from the fitted AAM model and compared against
a database. The current version of the system assumes hands
to be at a fixed distance from the camera with the fingers
fully extended. If a given application requires more flexiblity,
alternative solutions can be employed, e.g. estimating the
camera-hand distance using stereo vision.

In an identification application the system outputs the
name of the closest match from the subject database if the
distance to the model satisfies a pre-set matching criterium.
During operation the quality of the AAM fit is monitored
constantly. If the reconstruction error exceeds a predeter-
mined threshold the model is re-initialized or the user is
alerted in case of deviations from the target hand configu-
ration. Since the AAM fitting algorithm runs comfortably at

more than 230 frames per second [12], real-time processing
is still achieved. Due to the robustness of the AAM fitting
algorithm the system can handle arbitrary hand rotations
in the image as well as non-separated fingers. Usage of a
video camera as input device trades off image resolution
with overall system speed. In order to achieve both, a hybrid
still camera/video camera setup can be used. The hand is
tracked in the image sequence acquired from the video
camera using the combination of background subtraction and
AAM model fit. Once a stable hand position is established,
the high resolution still camera is triggered. Both cameras
are calibrated so that the model fit achieved in the images
from the video camera can be used to more accurately fit the
model in the high resolution image [10]. The system can be
augmented to include one or multiple controlled flashes.

IV. ACTIVE APPEARANCE MODELS

We begin with a review of Active Appearance Models
(AAMs) [3]. We define them, explain model construction
from training data, and describe the efficient “Project Out”
fitting algorithm introduced by Matthews and Baker [12].

A. Definition and Model Construction

The 2D shape of an AAM is defined by a 2D triangulated
mesh and in particular the vertex locations of the mesh.
Mathematically, we define the shape s of an AAM as the
2D coordinates of the n vertices that make up the mesh:
s = (z1,91,72,¥2,-,Tn,Yn)T. AAMs allow linear
shape variation. This means that the shape matrix s can be
expressed as a base shape sg plus a linear combination of m
shape matrices s;:

s = SO+ZpiSi (1)
i=1

where the coefficients p; are the shape parameters. AAMs are
computed from training data consisting of a set of images
with the shape mesh usually hand marked on them [3].
The training shapes are then geometrically aligned using
the Procrustes algorithm [3], [12]. Principal Component
Analysis (PCA) [9] is applied to the aligned training meshes.
The base shape sg is the mean shape and the matrices s; are
the (reshaped) eigenvectors corresponding to the m largest
eigenvalues.

The appearance of the AAM is defined within the base
mesh sg. Let sg also denote the set of pixels u = (u,v)T
that lie inside the base mesh sg. The appearance of the AAM
is then an image A(u) defined over the pixels u € so.
AAMs allow linear appearance variation. This means that
the appearance A(u) can be expressed as a base appearance

Ap(u) plus a linear combination of [ appearance images
Ai(u):

1
A(u) = Ag(u) + > A 4;(u) 2)
i=1
where the coefficients \; are the appearance parameters. The
appearance images A; are usually computed by applying
PCA to the shape normalized training images [3], [12].



B. Model Fitting

Fitting an AAM may be formulated as minimizing the
sum of squares difference between the appearance A(u) =
Ap(u) + 2221 A;A;(u) and the input image warped back
onto the base mesh I(N(W(u;p);q)) [12]:
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In this equation, the warp W is the piecewise affine warp
defined by the mesh triangulation from the base mesh s( to
the current AAM shape s and N is a 2D similarity transfor-
mation used to normalize the shape of the AAM. The goal
of AAM fitting is to minimize the expression in Equation (3)
simultaneously with respect to the appearance parameters X\,
the linear shape parameters p, and the similarity transform
parameters q.

One algorithm for fitting an AAM to an image is the
“project-out” inverse compositional algorithm proposed in
[12]. This algorithm performs the non-linear optimization of
Equation (3) in two steps (similar to Hager and Belhumeur
[5]). First the shape and linear transformation parameters
p and q are found through a non-linear optimization in a
subspace in which the appearance variation can be ignored.
The second step is then a closed form linear optimization
with respect to the appearance parameters A. The algorithm
is very fast, running at over 230 frames per second on
standard hardware [12]. An alternative algorithm for fitting
an AAM to an image is the Simultaneous Inverse Com-
positional Algorithm [1] which minimizes Equation (3) by
performing Gauss-Newton gradient descent simultaneously
on the warp and appearance parameters. The resulting fitting
algorithm performs better then the project out algorithm
described above, albeit at a much slower speed. Usage of the
simultaneous algorithm in a real-time environment therefore
has to be limited.

V. HAND DATABASE

To facilitate development and testing of the hand-geometry
based identification system we recorded a database of hand
images. We collected 54 images from 18 subjects. Each
person was imaged three consecutive times within the span
of approximately 60 seconds [14]. The majority of subjects
changed the position of the hand in the image between
recordings with some also changing the hand configuration.
Figure 2 shows example images from the database.

VI. HAND GEOMETRY FEATURES FOR PERSON
IDENTIFICATION

In this section we describe a set of candidate features for
our system (Section VI-A) as well as a selection criterion to
identify promising features (Section VI-B).

A. Candidate Features

For any classifier an ideal set of features shows little intra
subject variation and large inter subject variation, leading to
well separated class representations. Following this goal and

established practices in the field (see Section II) we define 14
distances on the hand as candidate features for our system.
See Figure 3 for an illustration. The features include the
lengths of the fingers as well as the length and width of
the palm. In our framework, each feature is defined with
respect to AAM model points. Therefore, after the AAM fit
has been established, the feature representation for the hand
can be computed very accurately, assuming a good model
fit.

B. Feature Selection

Out of the 14 distance-based features, we are only in-
terested in those that are consistent, i.e. features that are
insensitive to hand pose variations. The standard deviation
of a given feature across different images of the same subject
provides useful information, but it is not normalized: a
medium large standard deviation might be good for large-
distanced features, but certainly would disqualify a small-
distanced one. Thus, we introduced the following feature
consistency metric, rms;, for feature i:

gy 1" (fi(suby))
7 210" (fi(suby))
where f;(sub;) refers to the i-th feature of subject j (with

n; examples for subject j in the dataset). We furthermore
define

“4)

rms; =

n; 1 nJ
p (filsubs)) = — > (filsubjs)) Q)

7 s=1
as the average of the values of feature ¢ for subject j. Here
sub;, s refers to the example s for subject j. Finally we define

nj
o™ (Fulsuby)) = =S (fulsuby) — 1 (flsuby )
7 s=1

(6)
as the standard deviation of feature ¢ for subject j. For each
feature ¢ the rms; metric therefore computes an averaged
version of the ratio of the magnitude of the feature and
the corresponding deviation. The higher the rms; value, the
more consistent we consider the feature ¢ to be.

VII. EXPERIMENTS

In this section we evaluate the performance of the two
main system components, AAM fitting and classification
using the hand database introduced in Section V. We first
discuss the results of synthetic fitting experiments using
the AAM model constructed from the images of our hand
database (Section VII-A). In Section VII-B we then evaluate
the performance of a classifier using the features derived
from the fitted AAM model.

A. Model Fitting

We use all images and labels in the hand database de-
scribed in Section V to build a first AAM model. In order

IThe fitting experiments are designed to evaluate only the accuracy of
the fitting algorithm, not the capability of the model to handle unseen data.
For this reason, all labels are included in the dataset.



Fig. 2. Example images from the hand database. Hand positions and poses vary significantly between users. Subjects were encouraged

to change the hand pose between recordings.

Fig. 3. Location of the 14 features used as candidates in our
feature selection process. The distances are defined with respect
to the AAM model points. In cases where two lines are shown for
a particular feature (features “03”, “05”, and “11”), the longer of
the two lines is chosen.

to reduce noise in the manually established labels we apply
refitting [4]. In this process the AAM fitting algorithm is
initialized with the ground-truth labels and run until con-
vergence. The vertex locations of the fitted mesh are used
as ground-truth labels to build a new model. It was shown
in [4] that using refitting improves the fitting accuracy on
face data, especially for unseen subjects. In order to evaluate
the accuracy of the fitting algorithm we randomly perturb
the ground-truth shape and similarity transform parameters
and initialize the fitting algorithm with it. We then run
the fitting algorithm until convergence and measure the
Euclidean distance between the ground-truth vertex locations
and the fitted vertex locations.
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Fig. 4. Results from fitting experiments comparing the original
and refitted AAM models for different ground-truth perturbations
(referred to as “10/1” and “10/3”).

Figure 4 shows the Euclidean distance between the fitted
model and the ground truth across iterations of the fitting
algorithm for both the original and refitted model, averaged
across all 54 images. Refitting reduces the error for both
small and large initial perturbations by 17% and 23%, respec-
tively. Figure 5 shows examples of the refitted model before
and after fitting. The fitting algorithm is able to accurately
retrieve the ground-truth labels for small perturbations and
for most of the large perturbations.

B. Classification Accuracy

In order to evaluate the system performance in a realistic
setting, we determine identification accuracies for two sets
of hand-geometry measures: (a) distances computed from
the manually established ground-truth labels (referred to as
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(a) Initialization

Fig. 5. Results of applying the fitting algorithm using the refitted
(white) and the model after initial perturbation (red). The images

(b) After Fitting

model. The images in the (a) column show the ground-truth labels
in the (b) column show the model after convergence of the fitting

algorithm. The algorithm is able to accurately fit the model for all of the small perturbations and for most of the large perturbations.

M2 M3 M4 M5 M6 M7 M8 M9 Mi10 Mil Mi2 Mi3 Mi4 MI5
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Fig. 6.

Feature consistency measure rms for the 14 candidate features shown in Figure 3. In the first row we show results for features

derived from ground-truth labels (GTD). The features extracted after perturbation from ground-truth and fitting of the model are shown
in the second row (FTD). The 7 most consistent features are highlighted in color.

GTD) and (b) distances extracted from the fitted model
after initial perturbation from ground-truth (referred to as
FTD). Using the rms metric introduced in Section VI-
B we evaluate the feature consistency for the 14 measures
described in Section VI-A. Figure 6 lists the results for both
the GT'D and F'T'D measurements with the most consistent
features highlighted. The results show large differences in
rms values between features. Feature M2 (length of the
thumb) is far less consistent than feature M 11 (hand width),
a plausible result since M2 is much more likely to change
across hand poses than M11. M11 is therefore a better
candidate to be used for classification. The average rms
value for GT'D (75.7) and F'T D (74.1) is similar, with F'T' D
values being slightly higher when averaged over the 7 most
consistent features (98.7) in comparison to the GI'D values
(93.8).

To determine identification performance we perform 3-
fold cross-validation experiments with a 1-Nearest-Neighbor

classifier using the 3 images available for each subject. Using
the 7 most consistent features we exhaustively search for
the best performing 1-, 2-, 3-, etc. feature combination,
treating each feature as a dimension in the corresponding
Euclidean space. For reference purposes we also report the
corresponding Top2 match rate (correct match within 2-
Nearest-Neighbors). The results are shown graphically in
Figure 7 and numerically in Figure 8. The identification
performance is high for both distance measures, 94.4%
for GT'D and 90.7% for FTD, in each case using only
5 features. We therefore conclude that on our database
differences in performance between using ground-truth labels
and fitted labels are small.

VIII. SUMMARY AND FUTURE WORK

In this paper we introduced a novel approach to hand
geometry-based person identification. We successfully used
Active Appearance Models to robustly extract distance mea-
surements from hand images. Unlike the devices currently
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(a) Ground-truth labels (GT D)

Fig. 7.

(b) Fitted labels (F'T'D)

Classification accuracy obtained using 3-fold cross-validation with different numbers of features for ground-truth measurements

(GTD) and features extracted after fitting the AAM (F'T D). The performance achieved by the two methods is very much comparable.

Number of Measures 1 2 3 4 5 6 7
o) Best Measure Set 11 9,15 4.9,12 4,59,12 4,9,11,12,15 4,5,9,11,12,15 |4,5,9,11,12,13,15
~ Topl Match Rate 46. 30% 74. 07% 87. 04% 90. 74% 94. 44% 92. 59% 88. 89%
&) Standard Deviation 13. 98% 11. 57% 3.21% 6. 42% 0.00% 3.21% 9. 62%
Top2 Match Rate 55. 56% 85. 19% 92. 59% 94. 44% 94. 44% 92. 59% 94. 44%
Standard Deviation 9.62% 13. 98% 3.21% 0. 00% 0. 00% 3.21% 0. 00%
Number of Measures 1 2 3 4 5 6 7
a Best Measure Set 11 4,15 4,11,15 3,9,11,15 3,49,11,15 3,4,79,11,15 3,4,5,79,11,13
= Topl Match Rate 53. 70% 83. 33% 85. 19% 88. 89% 90. 74% 88. 89% 88. 89%
fr Standard Deviation 16. 97% 14. 70% 8. 49% 9. 62% 6. 42% 9. 62% 11.11%
Top2 Match Rate 62. 96% 83. 33% 90. 74% 92, 59% 94, 44% 92, 59% 92. 59%
Standard Deviation 8. 49% 14. 70% 8. 49% 8. 49% 5. 56% 8.49% 8. 49%

Fig. 8.

Numerical results corresponding to the performance graphs in Figure 7. The difference in Topl classification accuracy between

ground-truth measurements (GT'D) and features extracted after fitting the AAM (F'TD) is small with the Top2 results for the best

performing setting of five features being identical.

available on the market, our system allows subjects to put
their hand anywhere in the field of view of the camera
while minimizing physical contact to the device, thereby
eliminating hygiene concerns. We proposed a feature con-
sistency measure and used it to extract features suitable for
recognition from a larger set of candidates. In experiments
on a small-scale database, our system achieved identification
accuracies in excess of 90% using as little as five features.

In order to extend the experiments reported on here we
plan on collecting a significantly larger database of hand
images. This dataset will be used to evaluate the ability
of AAMs to generalize to unseen subjects, similiar to our
previous work on faces [4].
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