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Abstract 
Objectives:  In order to supply patient-derived genomic data for medical research purposes, care 
must be taken to protect the identities of the patients from unwanted intrusions.  Recently, 
several protection techniques that employ the use of trusted third parties (TTPs), and other 
identity protecting schemas, have been proposed and deployed.  The goal of this paper is to 
analyze the susceptibility of genomic data privacy protection methods based on such methods to 
known re-identification attacks. 
 
Methods: Though advocates of data de-identification and pseudonymization have the best of 
intentions, oftentimes, these methods fail to preserve anonymity.  Methods that rely solely TTPs 
do not guard against various re-identification methods, which can link apparently anonymous, or 
pseudonymous, genomic data to named individuals.  The re-identification attacks we analyze 
exploit various types of information that leaked by genomic data that can be used to infer 
identifying features.  These attacks include genotype-phenotype inference attacks, trail attacks 
which exploit location visit patterns of patients in a distributed environment, and family structure 
based attacks. 
 
Results: While susceptibility varies, we find that each of the protection methods studied is 
deficient in their protection against re-identification.  In certain instances the protection schema 
itself, such as singly-encrypted pseudonymization, can be leveraged to compromise privacy even 
further than simple de-identification permits.  In order to facilitate the future development of 
privacy protection methods, we provide a susceptibility comparison of the methods. 
 
Conclusion:  This work illustrates the danger of blindly adopting identity protection methods for 
genomic data.  Future methods must account for inferences that can be leaked from the data itself 
and the environment into which the data is being released in order to provide guarantees of 
privacy.  While the protection methods reviewed in this paper provide a base for future 
protection strategies, our analyses provide guideposts for the development of provable privacy 
protecting methods. 
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1. Introduction 

The genomic data of an individual is increasingly being collected, stored, and shared for various 

health related purposes.  In both the research and clinical environment, genomic data provides 

opportunities for health care that until recently were severely limited or nonexistent.  As a 

diagnostic tester for certain diseases, such as Phenylketonuria, early confirmation can initiate 

life-saving treatment, raise the standard of living, and help facilitate in family planning decisions.  

Beyond gross diagnostics, there is gathering evidence that suggests variation in our genome 

influences our body’s ability to process drugs and our susceptibility to disease.  However, with 

informative health-related data comes highly sensitive and personal information.  Many people 

fear that information gleaned from their genomic data will be misused, abused, to influence their 

employment and insurance status, or simply cause social stigma [6, 9, 13, 20].  For individuals 

afflicted with a particular disease, such as Huntington’s disease, diagnostic confirmation 

provides little hope or comfort because no cure or proven treatments exist. Moreover, an 

individual’s genomic data, unlike most clinical health information, retains specific information 

on, and provides relationships about, related family members.  Given the sensitivity of genomic 

data, there are many social pressures to protect the privacy of an individual’s genomic status. 

In addition to social pressures, there exist legal mechanisms for protecting genomic data privacy.  

In the United States, the adoption of the Privacy Rule of the Health Insurance Portability and 

Accountability Act [8], along with various state laws, mandate that the sharing of patient-specific 

data, including genome-based data, must protect the a patient’s identity when their data is shared 

from the original source of collection.  Failure to comply will result in legal action taken against 

the data sharer that can include revocation of government funding, fines, and imprisonment. 

Legal measures have been enacted outside of the United States as well.  In the European Union, 
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the Data Protection Act (DPA) of 1998 imparts strict regulations on the processing of personal 

data, of which genomic data is a part of [7].  In order to process identifiable genomic data, a data 

subject’s explicit consent must be secured before the processing of their data can begin.  Yet, 

according to the DPA, if it can be shown that the data does not relate to a living individual, then 

the regulations are substantially relaxed.  Thus, without proper guarantees of anonymity, not only 

will patients be less willing to provide data, but many data collectors will be unwilling to share 

genomic data for new or continuing collaborative research projects.  In recognition of the 

problem, the protection of privacy for genomic data is considered a major challenge for the 

biomedical research community [1, 22]. 

Over the past several years, a variety of techniques have been proposed to protect the identity of 

an individual whose genomic data is shared.  Several of the more sophisticated techniques 

advocate the use of pseudonyms to protect privacy [11, 18].  In general terms, pseudonymization 

converts the explicitly identifying features of an individual, such as name or social security 

number, into an encrypted or random value.  The newly created value is referred to as a 

pseudonym.  Advocates of such techniques claim that pseudonymization sufficiently protects the 

identity of the individual to whom the genomic data corresponds.  At a glance, such claims 

appear to be true.  How can one learn the identity of a pseudonymized genomic data sample, 

when there is no registrar linking pseudonyms to identity?  Unless an adversary deduces the 

encryption keys via cryptanalysis, or breaks into an encrypter’s computer and steals the key, the 

adversary should not be able to determine the identities of the pseudonyms. 

The claim that pseudonyms protect privacy is fundamentally flawed for a variety of reasons.  

One reason is that discussions about the protection capabilities of a pseudonymizing technique 

are provided under particular assumptions about the data sharing environment.  For example, a 
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pseudonymization schema for the protection of identities in data released from a single 

institution can fail when multiple institutions are releasing data.  Trail re-identification 

algorithms [17], which we review in this paper, have been shown to leverage unique patterns in 

location-visit patterns to link seemingly anonymous genomic data to named individuals.  There 

exist additional flaws and, subsequently, additional methods to re-identify genomic data. 

This paper is organized a series of protection method analyses.  In the next section, several 

published identity protection schemas for genomic data are reviewed.  Following each method, a 

re-identification attack, which the method is susceptible to, is introduced.  Since particular 

methods are susceptible to multiple methods, in Section 3 a high-level susceptibility analysis of 

each protection method for the presented re-identification attacks is presented.  Finally, the need 

for research into formal anonymity protection schemas and how these analyses can help in the 

design of new protection methods is discussed. 

 

2. Protection and Re-identification Methods 

In this section we analyze several published identity protection methods for genomic data.  For 

each method we review the protection schema and analyze the susceptibility of protected data to 

various re-identification techniques.  Specific re-identification techniques are reviewed and 

discussed with respect to protection methods as they are introduced.  For this analysis, 

terminology is based upon relational database theory.  A table τ{A1, A2, …, An} refers to a table 

with the attributes A = {A1, A2, …, An}, where each attribute is a semantically-defined category.  

Each row of a table is referred to as a tuple t[a1, a2,…, an] and corresponds to specific values 

a1∈A1, a2∈A2,…, an∈An.  When table τ is partitioned into identifiable and de-identified 

subtables, the table containing identifiable data is referred to as τ+ and the table containing de-
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identified data is referred to as τ+.  For example, in Figure 1, the table τ{Name, Social Security 

Number, Pseudonym, DNA} is partitioned into τ+{Name, Social Security Number} and τ-

{Pseudonym, DNA}. 

 

τ 

τ+ τ - 
Name SSN Pseudonym DNA 
Bob 901231232 SA9212OK19 cttg…a 
Kate 874017412 AS09D8LK1J atcg…t 
John 213732120 D8A79AD133 acag…t 
Mary 521230138 ASSD834MS1 accg…a 

Fig. 1. Table τ{Name, SSN, Pseudonym, DNA} partitioned into a table with identifiable data τ{Name, SSN} 
and de-identified data {Pseudonym, DNA} 

 

2.1. deCODE 

The first genomic data protection model we study was introduced by deCODE Genetics, Inc. 

[11] in 2000.  The model consists of two parts, each of which uses a trusted third party (TTP) 

intermediary.  The first corresponds to how appropriate research subjects are discovered in a de-

identified manner.  The second part entails how actual data is submitted to deCODE and used in-

house for research purposes.  Each is susceptible to different re-identification attacks. For this 

analysis, and brevity, we concentrate on how re-identification can occur during the research 

subject discovery process. 

 

2.1.1 deCODE Trusted Third Party Model – Potential Patient Set Construction 

The first part of deCODE’s research model is to determine an appropriate set of research 

subjects.  Fig 2. provides an overview of this process, while the following text provides some 

more specific features of the procedure.  According to the deCODE model, data collection is 
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handled on a research project specific basis.  As such, the process is initiated by deCODE 

researchers.  The researchers communicate a specific disease of interest to physicians who attend 

to the general patient population.  The physicians create and send a population-based list 

L{Name, Social Security Number, {Additional Identifying Data}, Disease} of patients with the 

disease to the Data Protection Commission (DPC) of Iceland, where “additional identifying 

data” pertains to a set of useful demographic attributes for the identification of individuals.  

Upon receiving this list, the DPC removes all explicitly identifying information, except for the 

Social Security Number (SSN).  The social security number is encrypted with a reversible 

encryption function f into an alphabet-derived code f(SSN). 

 

 

Fig. 2. Determining the set of relevant patients.  The shape of the step denotes, which entity acts on the data: 
oval =  deCODE, diamond = physicians, rectangle = Icelandic Data Protection Commission. 

 

The encrypted list L′{f(SSN), Disease} is then sent onto deCODE. At deCODE, the L′ is fed 

through a computerized population-based genealogy, which has been previously encrypted by 

the DPC with encryption function f and linked to patient medical information.   From the 

genealogy, deCODE determines a new encrypted list N{f(SSN)} of individuals that they would 

like to gather genomic data from.  Subsequently, list N is sent to the DPC, who decrypts the 

names and sends the list N′{name, SSN} to the appropriate attending physicians for contacting 

their patients.  By acting as the intermediary with full encryption and decryption capabilities, the 

DPC functions as a completely trusted third party (TTP). 

DPC encrypts/
forwards patient lists

and genealogies
to deCODE

DPC decrypts/
forwards patient list

to physicians

deCODE sends
disease request

to physicians

Physicians
send patient lists

to DPC

deCODE returns
list of encrypted
patients of study
interest to DPC

Step 1 Step 2 Step 3 Step 4 Step 5
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2.1.2 Family-Structure Attacks 

There are several re-identification techniques that can be employed to re-identify data protected 

under the deCODE model.  We will go over an extended set of techniques in Section 3; here we 

focus on a particular attack, which we term the family structure attack. 

deCODE considers the use of historical and genealogical repositories to be one of its most 

powerful techniques for discovering interesting patterns and useful patients.  It should be 

apparent that pseudonymizing the names of individuals does not obscure any of the genealogical 

structures.  Genealogies, which are rich in depth and structure, permit the construction of large 

sets of familial relationships.  In theory, such families can have many configurations and 

variation.  However, it is the massive quantity of family structure configurations that permit a re-

identification attack. 

Let us analyze the complexity and number of family structures that one can discern.  As a base 

case, consider one of the simplest blood-related family structures, as shown in Fig. 2., of 2 

parents and 1 child.  Since there must exist a man and woman to produce a child, the only 

variable is the gender of the child.  For this analysis, we use the variable Vi, to represent the 

ambiguous variable of gender for child i, which can undertake the values of male (M) or female 

(F). 

In the family structure, there are 2 variants on the family structure: [M1, F1, V1=M] and [M1, F1, 

V1=F]. 
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Fig. 2.  Pedigrees of nuclear family with left) one child (s1) and right) two children (s2).  Right) Circle = male 
(M), square = female (F), and diamond = variable (V) gender. 
 

Since we are considering not only pedigrees, but diseases status, we must incorporate disease 

status into the problem.  Let us consider that disease status D is a Boolean variable, such that an 

individual is either diagnosed with D or is not.  In this aspect, all three variables M1, F1, and V1 

are independent of each other and there exist |{M1, D}|*|{F1, D}|*|{V1, D}| = 2*2*4 = 16 

possible variants on what we term the family-disease structure.  Now, let us expand the simple 

family to include two children.  In this family, V1 and V2 are not independent, since [V1=F, 

V2=M] is equivalent to [V1=M, V2=F].  There are 3 variants on this family structure: [M1, F1, 

V1=M, V2=M], [M1, F1, V1=M, V2=F], and [M1, F1, V1=F, V2=F].  And when disease status is 

factored in, there exist |{M1, D}|*|{F1, D}|*|{V1, V2, D, D}| = 2*2*10 = 40 variants on the 

family-disease structure. 

We derive a recursive relationship for calculating the number of sibling-disease structures for an 

arbitrary number of siblings as follows.  Let sn be the number of variants for a sibling-disease 

structure consisting of n children.  First, it should be obvious that s0=1, since there exists only 

one type of family without any children.  Now, s1= 4 as we demonstrated above for the lone 

sibling structure of {V1, D}.  We define the recursion as: 

 

( )( )
2
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+++== −

nnsss nn  
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From a computational standpoint, the above recursive relation can be simplified into a relatively 

simple series, which can be solved via induction (see Appendix A)  The resulting closed form 

expression is: 

( ) ( )∑
=

++−=
n

i
n iins

0
1*1   

6
6116 23 +++= nnn    Eq. 1 

Eq. 1 provides a direct way of computing the number of variants for a sibling-disease structure of 

n siblings.  When computing the number of variants for a nuclear family-disease structure with 

sn, the parents of the siblings must be factored in.  Let us call this number yn.  In a naïve scenario, 

the disease status of the children is independent of the parents.  As presented above, this |{M1, 

D}|*|{F1, D}| = 4, and thus yn= 4*sn.  From yn and n we can compute the total number of 

individuals that are covered by the variants of the family-disease structure, which is yn*(n+2).  

Actual numbers for such family-disease structures are presented in Table 1 for families of up to 6 

children. 

 

Table 1.  Uniqueness of family structures and the subsequent number of re-identifications possible for a 
simple nuclear family. 

# of Children 
(n) 

# of Sibling  
Structure 
Variants 

# of Sibling-Disease 
Structure Variants 

(sn) 

# of Nuclear Family- 
Disease Structure 

Variants (yn) 

Max # of Individuals 
Re-identifiable 

(n+2)*(yn) 
0 1 1 4 8 
1 2 4 16 48 
2 3 10 40 160 
3 4 20 80 400 
4 5 35 140 840 
5 6 56 224 1568 
6 7 84 336 2688 

 

Since genealogical data is mainly of interest, pedigrees will almost always be much more robust 

than a simple nuclear family.  Thus, consider a more complex scenario with a family that 

consists of three generations of family members (i.e. grandparents, parents, and children).  An 

extended family hinged around one set of parents is presented in Fig. 3.  There are 4 
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grandparents, 2 parents, 2 siblings of the parents, and 2 children of the parents.  The image of 

Figure 3 provides the generalized family structure with 2 children for each set of parents.  The 

right image of Fig. 3 provides a specific variant of the family-disease structure. 

 

Fig. 3.  Left) Simple extended family pedigree hinged on parents M3 and F3. Independent nuclear families are 
outlined and denoted N1, N2, and N3. Right) A specific variant of the family-disease structure. 

 

Based on this structure, all males and female are fixed because they must be alive for V3 and V4 

to exist.  Notice that there are three independent sets of sibling structures {V1, M3}, {V2, F3}, and 

{V3, V4}, and since M3 and F3 are fixed, we can reduce the first two sets to {V1} and {V2}, 

respectively.  Based on these sets, there can exist |V1|*|V2|*|{V3,V4}| distinct familial structures, 

which in numbers is 2*2*3 = 12 distinct types families.  Factoring disease status in, there are 

s1*s1*s2 = 4*4*10 = 40.  Considering the disease status of all family members, the number of 

distinct family-disease structures is equivalent to |N1|*|N2|*|N3| = y1*y1*y2 = 16*16*40 = 10240 

distinct family structures. 

Note that this number accounts only for a very particular family structure.  In the event that V1 

and V2 each have a 2 child family, then the number of variants of the family disease structures 

explodes to an order of 106 family-disease structures.  Factoring in the various types of sibling 

structures that exist, there exist (y0+y1+y2)3
 or over a 200,000 variants on the family-disease 

structures hinged around two parents as shown in Figure 2, where the number of children varies 

V1 V2

V3 V4

M1 F1 M2 F3

M3 F3

N1 N2

N3

M1 F1 M2 F3

M3 F3

N1 N2

N3

V1 = M V2 = F

V3 = M V4 = M
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from 1 to 3 for each of the grandparents and 0 to 3 for the core parents. From this analysis, it 

should be apparent that it does not take much to make a genealogy unique. 

Obviously, not all disease-family structures, and the variants of such, will be realized in a 

population, and certain variants will be more probable than others.  However, a magnitude of 106 

remains a daunting number, considering that there are approximately 10 individuals in this 

family structure, and thus on the order of 107 individuals in consideration.  The number of family 

disease structures is even larger, considering that this analysis does not account for additional 

features, such as the fact that certain family members may be deceased (another identifying 

feature which can be communicated in the pedigree), and that supplementary medical or genomic 

features can be included in the health information [Cancer].  The latter is should be especially 

noted, since many polygenic trait studies are interested in learning which factors are the most 

influential in disease severity or occurrence.  

The ability to determine unique pseudonymized family structures is one part of the re-

identification susceptibility.   Alone, unique family structures do not reveal identities.  Thus, in 

addition to unique family structures, we need identifiable information to link our family 

structures to.  However, such identifiable information is publicly available in the form of various 

genealogical databases available both offline on CD-ROMs and on the World Wide Web.  For 

example, public genealogical records on Icelanders, reside in many popular publicly available 

databases, including Ancestry.com, Infospace.com, RootsWeb.com, GeneaNet.com, 

FamilySearch.org, and Genealogy.com.1  From such data, it is not difficult to construct 

identifiable family structures.  And with such information in hand, an adversary can link disease 

labeled family structures to named individuals. 
                                                 
1 At the time of writing, the website http://www.rat.de/kuijsten/navigator/iceland/ provided a larger number of Icelandic 

genealogical resources. 



 12

 

2.1.3 Trusted Third Party Model – Patient Sample Submission 

After a patient is contacted by their physician, they can choose whether or not to participate in 

the deCODE research study.  The set of patients that opt-in donate blood samples at a facility run 

by the DPC, where each sample is labeled with a “sample number” (AN).  The AN and SSN of 

the individual is then entered into a computer database.  Subsequently, the DPC encrypts the 

SSN, with their encryption function f, into f(SSN) and forwards both the AN-labeled samples and 

the encrypted list of participating subjects P{AN,  f(SSN), Sample, Disease} to deCODE.  At 

deCODE, each AN is associated with a new in-house number IN, such that deCODE maintains 

the list P′{IN, AN,  f(SSN), Sample, Disease}.  Though the AN-IN relationship is known at 

deCODE, AN’s are withheld from the majority of laboratory and deCODE employees.  Rather, 

the laboratory researchers at deCODE work with P′′{IN, Sample, Disease}. 

 

Fig. 4. Participating patient data de-identification.  The shape of the step denotes, which entity acts on the 
data: oval =  deCODE, diamond = physicians, rectangle = Icelandic Data Protection Commission. 
 

2.2. Gent 

The second model considered was introduced by researchers from the University of Gent [18].  

In this work, both a batch and interactive protection model for protecting the privacy of genomic 

data are outlined.  For this research, our analysis is limited to the batch model. 

DPC relates sample
to sample number
(AN), encrypts SSN

and forwards to
deCODE

Patients give
blood sample and

SSN To DPC

deCODE strips
AN and SSN.
Assigns IN.

Provides data to
researchers

Step 1 Step 2 Step 3
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Akin to deCODE, the Gent model employs a trusted third party (TTP); however, the TTP is 

given restricted access to the patient-specific information.  In the deCODE model, trust is 

necessary on the part of both the physicians and the patients, since they supply raw data to the 

DPC, who encrypts the data before passing it onto deCODE.  In the Gent model, the groups that 

submit DNA for secondary usage do not have complete trust in the TTP.  More specifically, they 

believe that the TTP should not be permitted to see the identities of the individuals whose DNA 

has been submitted.   When a third party does not have complete access to data, we say that it is 

a semi-trusted third party (sTTP). 

 

2.2.1 Semi-Trusted Third Party Model 

Under the Gent model, a set of data holders, such as a set of physicians or researchers at a 

particular institution that have collected genomic data from a set of patients, transfer data to a 

central repository maintained by a third party.  First the data holders collect data on their patients 

and construct a list of identified individuals and their genomic data L{Identity, DNA}.  Instead of 

handing over the raw data to the third party, the data holders apply a public-key encryption 

function f to the Identity attribute and convert L into L′{f(Identity), DNA}.  This encrypted list is 

passed onto the sTTP, who then applies their own public-key encryption function g to f(Identity) 

in order to create a doubly-encrypted list L′′{g(f(Identity)), DNA}.  In addition, the sTTP can act 

as a data broker for multiple data holders.  Thus, the data holder maintains a set of lists, 

A{g(fA(Identity)), DNA}, B{g(fB(Identity)), DNA}, …, Z{g(fZ(Identity)), DNA} for locations A, 

B…Z, each of which uses their own encryption functions and keys. 

When a new researcher requests sTTP for data, sTTP supplies the appropriate set of doubly-

encrypted lists.  In the event that researchers need additional data on the subjects in the supplied 
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lists, such as from location A, then the researchers send a request onto sTTP with a sublist of 

individuals A′{g(fA(Identity))}.  In turn, the sTTP decrypts and sends the single-encrypted pairs 

A′{fA(Identity)}onto location A for additional data. 

 

2.2.2 Trail Attacks 

One of the main reasons why data requesting researchers are supplied with doubly-encrypted 

pseudonyms is to prevent adversaries from employing a dictionary attack for re-identification 

purposes.  Despite resilience to a direct dictionary attack, which is described more in-depth in 

Section 3, the Gent model does not guarantee identity protection.  One of the main reasons why 

this method fails is that it is susceptible to what is known as a trail attack.  The trail attack works 

as follows.  Consider an environment where there exists a set of locations L, such as a set of 

hospitals, and a set of data subjects S, such as a set of patients.  At each location l∈L that a 

patient visits, l has the ability to collect multiple types of information, such as clinical and 

genomic data.  To protect privacy when data is released, each hospital releases data in a 

partitioned manner, such that identified data and de-identified data are released separately.  The 

first table released, τ+(demographic information, clinical information), where demographic 

information contains identifiable data.  Oftentimes, patient clinical and/or discharge data is 

released in an identified manner or a de-identified manner that can be re-identified to named 

individuals through linkage with public records [21].  Therefore, let it be the case that identified 

clinical information is available on the set of patients.  The second table released, τ-(DNA), 

consists of  as one partition and a list of genomic data samples as another.   

As stated above, by the Gent model, the genomic data list consists of encrypted identifiers.  

Thus, if an adversary was to attempt a linkage of the genomic data with the patient list for any 
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particular location, then no re-identifications can occur.  However, it is apparent in many 

environments, including the Gent model, that many locations function and release data 

independently.  This aspect is detrimental to privacy since both genomic and explicitly-

identifiable data consist of static information.  Thus, if an adversary retrieves data from a set of 

locations, he can create two tracks of data.  The first track consists of the set of locations that a 

genomic data sample was left behind at, or the trail of the data.  The second track consists of the 

set of locations that an identity visited.  Based on trail patterns in these two tracks, it is possible 

to link the genomic data trail left behind by an individual to the trail of explicitly identifiable 

data. Fig. 5. provides an example of how identified and DNA tracks can be constructed.   

 

Figure 5. Left) Data releases made from three locations l1, l2, l3.  Right) Resulting Identified and DNA tracks 
created. 

Given identified and DNA tracks, formal algorithms to perform trail re-identification have been 

developed [15, 17]. These methods carry out re-identification in a variety of circumstances, 

including when genomic data and identity trails are exactly the same, as shown in the left of Fig. 

5., when certain data is missing, as shown in the right of Fig. 5., and even when a patient leaves 

behind multiple samples (e.g. sequence of a gene vs. SNP data) [16]. 

l1 
τ+  τ - 

Name  Pseudonym DNA 
John  1G09JU3R acag…t 

Mary  F4P02SD4 accg…a 

    
l2 

τ+  τ - 
Name  Pseudonym DNA 
John  4FG5097H acag…t 

Bob  U89KM32J cttg…a 

    
l3 

τ+  τ - 
Name  Pseudonym DNA 
Kate  AOEHA120 atcg…t 

Bob  1X3C5VK4 cttg…a 

Mary    

Identified Track 
Name l1 l2 l3 
John 1 1 0 
Mary 1 0 1 
Bob 0 1 1 
Kate 0 0 1 

DNA Track 
DNA Pseudonyms l1 l2 l3 

acag…t 1G09JU3R 
4FG5097H 1 1 0 

accg…a F4P02SD4 1 0 0 
cttg…a 

U89KM32J 
1X3C5VK4 0 1 1 

atcg…t AOEHA120 0 0 1 
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2.3. De-identification 

The third model we examine has been employed by a variety of groups.  It exists in many 

environments, including the sharing of epidemiological and genetic data [4, 23], the construction 

of human mutation databases, and research with disease registries [10].  This method entails the 

simple de-identification of the data being studied. 

 

2.3.1 Random IDs and De-identification 

Advocates of the de-identification model for DNA protection assume that the identity of DNA 

data is protected if explicit identifiers are removed or generalized.  Under a de-identification 

model, the identifying information of an individual is obscured completely or generalized before 

being released.  For example, instead of releasing the date of birth, the age of the individual 

would be released.  In many situations, a unique identifier is assigned to a patient for linkage 

purposes.  In the model designed for the Utah Resource for Genetic and Epidemiologic Research 

(RGE), the identifier is a random number, which is generated for each subject.  In this case, the 

random number functions as a pseudonym. 

 

2.3.2 High-Level Inference Attacks 

The high-level linkage attack is an attack strategy that utilizes domain knowledge.  In prior 

research, this method was demonstrated with a direct linkage strategy.  It was proven that the 

removal of a set of attributes from one list removal of direct identifiers, such as date of birth, do 

not guarantee anonymity [21].  The high-level linkage attack proceeds as follows.  Given two 

tables X{Ax1, Ax2, …, Axn} and Y{Ay1, Ay2, …, Aym}, we construct a set of relations XRY between 
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the two tables.  For example, in the data protection method of the RGE, released genomic data 

may be accompanied by de-identified demographic information.  In an attempt to prevent direct 

linkage, certain demographic information, such as date of birth may be generalized simply to age 

of the subject.    Though the generalization of date of birth may appear to protect data, it is not 

guaranteed.  For example, let the two tables be Health{name, address, birthdate, gender, zip 

code, hospital visit date, diagnosis, treatment} and DNA{age, gender, hospital visit date, DNA}.  

The obvious set of attribute relationships that can be extracted are {<birthdate, age>, <gender, 

gender>, <hospital visit date, hospital visit date >}.  For each tuple h in Health, we can check 

the number of tuples in DNA that h can be related to.  If the number of tuples is 1, and we have 

sufficient belief that this is the only entity in the general population that h could be related to, 

then a re-identification is revealed. 

The relation set that was constructed can be expanded if relationships between clinical and 

genomic data exist.  In fact, in previous research, we demonstrated that such knowledge can be 

extracted.  We discovered that there exist a significant number of diseases for which a mutation 

in the genome is directly related to a standard International Classification of Disease Code - 

version 9 (ICD-9) [14].  We recently performed a non-exhaustive literature review, and 

discovered that there exist at least 40 ICD-9 codes that can be related to 37 DNA-mutation 

causing diseases.  This list we provide in Table 2.  In addition, the pharmacogenomics 

community continues to discover relationships between the variation in an individual’s genome 

and the ability to process drugs and treatments [1].  Given such domain knowledge, it is easy to 

expand the relation set to include such relations as {<diagnosis, DNA>, <treatment, DNA>}.  

 

Table 2.  ICD-9 codes that can be inferred from mutations in a patient’s genomic data. 
Disease in Medical Release Data ICD-9 Code Known Gene(s) 

Adrenoleukodystrophy 3300 ALD 
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Amyotrophic Lateral Sclerosis (ALS) 33520 SOD1, ALS2, ALS4, ALS5 
Burkitt’s Lymphoma 2002 MYC 

Chronic Myeloid Leukemia 2051, 20510, 20511 BCR, ABL 
Cystic Fibrosis 27700, 27701, V181, V776 CFTR, CFM1 

Duchenne’s Muscular Dystrophy (paralysis) 33522 DMD 
Ellis-van Creveld (chondroectodermal dysplasia) 75655 EVD 

Essential Tremor (idiopathic) 3331 ETM1 (FET1), ETM2 
Familial Mediterranean Fever (amyloidosis) 2773 FMF 

Fragile X 75983 FMR1 
Friedrich’s Ataxia 3340 FRDA 

Galactosemia 2711 GALT 
Gaucher's disease (cerebroside lipidosis) 2727, 3302 GBA 

Hemophilia Type A 2860 HEMA 
Hereditary Hemmorhagic Telangiectasia 4480 HHT 

Huntington’s Chorea 3334 HD 
Hyperphenylalaninemia (Phenylketonuria) 2701 PAH 
Immunodeficiency with hyper-Igm (HIM) 27905 TNFSF5 

Kugelberg-Welander 33511 SMN/NAIP region 
Machado-Joseph Disease (Spinocerebellar Ataxia 3) 3348 MJD 

Marfan Syndrome 75982 FBN1 
Menkes Syndrome 75989 ATP7A 

Methemoglobinemia 2897 HBB, HBA1, DIA1 
Myotonic dystrophy 3592 DM 
Pendred's syndrome 243 PDS 

Prader-Willi Syndrome 75981 SNRPN 
Refsum’s Disease 3563 PAHX 
Sickle Cell Anemia 28260 HBB 

Spinocerebellar ataxia/atrophy 3349 SCA1 
Tangier disease 2725 ABC1 

Tay-Sachs 3301 HEXA 
Tuberous Sclerosis (Pringle’s disease) 7595 TSC1, TSC2 

Vitelliform Macular Dystrophy (Best Disease) 36276 VMD2 
von Hippel-Lindau (Angiomatosis Retinocerebellosa) 7596 VHL 

Werner's disease or syndrome 2598 WRN 
Werdnig-Hoffmann disease 3350 SMA1 

Wilson’s Disease 2751 ATP7B 
 

2.3.3 Low-Level Inference Attacks 

In the high-level attack, we utilize information that can be directly extracted from a single tuple 

of information.  However, when more robust clinical information is available, additional 

information about an individual’s genomic data can be inferred.  When relational information is 

learned from multiple sources of information or multiple tuples in the same table, we call it a 

low-level inference attack.  For example, consider Huntington’s disease, which is caused by a 

CAG repeat mutation in the HD gene.  Research has shown that there exists a relationship 

between the age of onset of the disease and the number of CAG trinucleotide repeats [2, 3].  

Unlike the relationships between gene mutations and clinical codes constructed for the high level 
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analysis, the age of onset is not standard medical information included in an individual’s medical 

information.  Yet, we discovered that, given longitudinal medical information on an individual, 

tight bounds for the age of onset (i.e. within 3 years of age) of the patients could be constructed 

[16].  With this knowledge, one can generate and append a distribution of the expected age of 

onset to both the medical and DNA data.  Each distribution is estimated from its respective 

information. 

An additional feature of the low-level inference attack for genomic data is that it can become 

more powerful with time.  Since the goal of genomic medicine is to elicit the relationships 

between genomic data and clinical phenotype, the number of relations, and specificity of such, 

increase with advances in basic medical research.  Consider the Huntington’s disease example.  

In the early stages of Huntington’s disease research it was determined that a mutation in 

chromosome 4 was responsible for the manifestation of the disease in a patient.  At that time, the 

only clinical information that a genome could reveal was Boolean, either an individual would be 

diagnosed with the disease or they would not.  Yet as time progressed, and research into the 

disease became more advanced, it was found that the disease was caused by a CAG repeat 

mutation and that this mutation correlated with the disease’s age of onset.  At first, a gross 

correlation was determined, such that the juvenile form of the disorder could be distinguished 

from the adult form.  After continued research, it was shown there exists a strong correlation 

between the general age of onset of the disease and CAG repeat size.  This pattern of increased 

granularity is due to increased sophistication in the understanding of genotype-phenotype 

correlations.  Moreover, such relationships are not limited to health related information, but to 

demographic information.  The goal of the human genome diversity project and genomic 

anthropology is to determine the relationships between genomic variation and ethnicity.   
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2.4. Denominalization 

2.4.1 Random and Family Coding 

The model proposed by Gaudet et al. [10], which we will refer to as the Quebec model, 

approaches the problem of identity protection from a partitioning perspective.  The technique is 

referred as “denominalization” or the separation of features corresponding to identity.  The 

technique works as follows.  Each patient is assigned two numbers.  The first is a random 

number, while the second is a family-based code.  The random number is used to manage the 

clinical and biological samples corresponding to the individual.  In the protocol description, it is 

claimed that different levels of anonymity can be achieved through the suppression of various 

identifiers.  Fully anonymous biological samples are those that are stripped of all identifiers. 

The family based code is a numerical code that is subdivided into five parts or cells.  The first 

cell corresponds to clinical aspects of an individual, while the latter four cells refer to 1) family 

number, 2) relation to family member, 3) child of which marriage (i.e. if parents have had 

multiple marriages), and 4) relation as a sibling, respectively.  In addition, an individual may 

have a family based code for multiple families, with a connecting code relating the information.  

The individual and family codes are managed independently.  Information corresponding to 

family codes is then released in controlled manner through the withholding of particular cells. 

 

2.4.2 Pseudonyms as an Anonymity Threat 

The denominalization model is susceptible to both the family-structure and inference attacks 

described above.  However, this method is susceptible to another attack, one that is dependent on 

the pseudonym and coding strategies that denominalization utilizes. 
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As demonstrated above, methods that mask the explicit identity of genomic data through such 

methods as pseudonyms or de-identification offer no protection against particular types of re-

identification.  Moreover, blind faith in cryptographic or recoding methods to protect anonymity 

can provide the basis for further erosion of patient privacy, beyond that of a susceptibility to re-

identification.  Consider a set of hospitals H, where each hospital h∈H releases tables τh
+ and τh

- 

with attributes Ah
+ = {name, date of birth, gender, zip code, clinical data} and Ah

- = 

{pseudonymh, DNA}.  The attribute pseudonymh is generated through a reversible encryption 

function fh, such as public-key encryption fh(Identity, keyh) = pseudonymh, where Identity is a 

tuple of patient information [name, date of birth, gender, zip code].  Richard (a.k.a. Richard the 

Re-identifier) is an unscrupulous researcher who wants to re-identify as much data about the 

patient population as possible.  So, Richard uses a trail re-identification attack to re-identify 

some of the patients released from a set of data releasing locations.  Upon re-identification, 

Richard can construct a table with the attributes {name, date of birth, gender, zip code, 

pseudonym1, pseudonym2, ..., pseudonymH}, where pseudonymx is the pseudonym that hospital x 

uses for the identity of the patient.  Thus, Richard has achieved his goal of re-identifying the 

protected genomic data. 

A modified version of the dictionary attack can be used to exploit information released under the 

Quebec model.  First, recall the family-structure attack described above.  Given sufficient 

information to reconstruct and re-identify a certain amount of familial information, the recoding 

of familial relations can reveal additional information that may or may not have been learned in 

the family-structure attack, such as temporal information in the genealogy.  For example, when a 

family has multiple children, the fifth cell of the family code, denotes what order of birth a 
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sibling is.  Moreover, under the coding schema, this information is distinguishable for males, 

where the system uses even numbers, and females, where odd numbers are employed. 

Furthermore, with this dictionary information in hand, there are additional malicious acts that 

Richard is now capable of conducting.  When location x has sufficient confidence in the 

pseudonymization process to uphold anonymity, employ pseudonym_x is utilized for internal 

data linkage purposes.  Though the Quebec model explicitly separates individual information 

from family information, there are other models that do use pseudonym_x for multiple purposes. 

This means that if Richard requests additional information about a set of individuals with 

pseudonyms (which he has already re-identified) from location x, he can learn additional 

information about patients that was meant to remain anonymous. 

There is an additional problem though, which has to do with the susceptibility of the re-identified 

data to cryptanalysis.  For each location x, Richard can construct a set of <Identity, 

pseudonym_x> pairs.  Given a set large enough, Richard will be able to conduct a dictionary 

attack to learn the encrypting function and key for location x.  With function and key in hand, 

Richard can perform a variety of malicious acts.  First, since trail re-identification may not have 

re-identified the identities of all individuals, with Richard can now decrypt the additional 

pseudonyms that he failed to re-identify.  The decrypted pseudonyms can then be directly linked 

to the clinical data.  In addition, Richard may be able to pose as a confidant of location x and 

generate false data through the key.  Data generated by Richard will appear to be real, since he 

can incorporate genuine demographic data to encrypt pseudonyms.  In this manner, Richard 

could submit data to affect research project datasets or falsify certain patients’ medical records. 
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3. Re-identification Susceptibility 

In the previous section, it was shown that none of the genomic privacy protection methods are 

impervious to re-identification.  This was presented from the perspective of a single re-

identification attack being used against a given privacy protection method.  However, though the 

susceptibility of each method was discussed for one method, does not suggest that the method 

provides protection against the other methods.  In fact, we find this to be quite to the contrary.  In 

this section, we examine the general re-identification susceptibility for each of the protection 

methods. 

 

Table 3. Gross susceptibility of privacy protection models to re-identification. 
 deCODE Gent Quebec De-identification 

w/ Random IDs 
Third Party Full Semi N/A N/A 

Model 
Trusted 

Third Party 
Encryption 

Semi-Trusted 
Third Party 
Encryption 

Denominal- 
Ization and 
recoding 

De-identification / 
Random ID 

Family Structure Attack Yes No Yes Yes 
Trail Attack No Yes No Yes 

High-Level Inference Attack Yes Yes Yes Yes 
Low-Level Inference Attack No Yes Yes Yes 

Dictionary Attack Yes Yes No No 

In Table 3, a side-by-side comparison of susceptibility of the protection models to known re-

identification attacks is reported.  This analysis is presented from a general point of view, such 

that either a technique is susceptible or it is not.  We find that each of the protection models is 

susceptible to a minimum of three of the four re-identification attacks.  Here, we discuss how 

each of the re-identification attacks fares against the protection models. 

 

Family Structure Attack.  The only model not susceptible to the family structure attack is the 

Gent semi-trusted third party model.  Under this model, no familial relationships are considered 

in the genomic data.  Under very specific cases, familial inferences may be possible, such as 
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haplotype analysis of DNA sequences to determine possible familial relations.  However, 

without more confidence about whether or not related family members are in the dataset, such 

analysis could create false family structures and familial relations.  Note that the goal of the 

Quebec model’s denominalization strategy strives to prevent the family attack almost explicitly.  

It provides protections by separating the individual from the family and using a local recoding of 

the identity.  Yet, once this information is studied in a genealogical setting, the protections are 

minimal.  Similarly, both the deCODE and the RGE models reveal genealogical information.  

The deCODE model does so on large scale, since this is how subject recruit is performed.  In 

contrast, the RGE model is more difficult to analyze.  The RGE model is more difficult to 

analyze than the previous three.  In general, as shown in Table 3, the RGE model is susceptible 

to all re-identification attacks.  Yet, this may be somewhat deceiving.  Since the RGE maintains 

a massive repository of diverse datasets, not all re-identification attacks can be performed on 

every dataset released by RGE.  The analysis of re-identifiability for RGE released datasets is 

data dependent.  Since RGE does have the ability to reveal genealogical information, and the 

only protection afforded to such data is de-identification and pseudonymization with random 

ID’s, this model is susceptible to the family structure attack. 

 

Trail Attack.  To construct a trail attack, two criteria must be satisfied.  The first requirement is 

that an individual’s data can be distributed over multiple locations.  The second requirement is 

that both the genomic and the identified data are available in a partitioned manner.  Table 4 

provides a characterization of which features the protection methods satisfy.  The deCODE 

model does not satisfy the multiple location criteria.  No location based information is not 

revealed, nor is necessary.  In addition, the Quebec model is not susceptible.  Under the current 
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version of the Quebec model, genomic data is collected at one location only.  Yet, if this model 

was applied to a distributed information collecting and sharing environment, then the trail attack 

would be a feasible method of re-identification.  The Gent model, as discussed above, does 

satisfy both criteria and is therefore susceptible.  The RGE model is susceptible as well, since 

genomic data could be requested from multiple sources.  The health-specific information could 

be either supplied directly as a separate source, or derived from various external resources, such 

as discharge information. 

Table 4. Trail re-identification criteria. 
Model Multiple Locations Partitioned Identified and 

DNA Data Available 
deCODE No Yes 

Gent Yes Yes 
Quebec No Yes 

RGE Yes Yes 
 

High-Level Inference.  This inference attack exploits the relationships that can be constructed 

between the genomic data and known demographic or clinical information.  As such, all four 

protection methods are susceptible to the attack.  However, it should be noted that though 

relationships between attributes in different datasets can be constructed, this does not guarantee 

that a re-identification will occur.  Thus, when considering high-level inference attacks with 

genomic data by itself, as is the case with the Gent model, this attack is dependent on the 

specificity of the known relationships between genomic data and clinical phenotype.  Yet, when 

demographic and geographic information may accompany the genomic data, such as in the RGE 

model, then care must be taken to determine how uniquely an individual’s features identify an 

individual. 

 



 26

Low-Level Inference.  When more specific and longitudinal information is available, then this 

attack is applicable.  The deCODE model does not permit this type of attack because the goal is 

for gene discovery, not the clinical applicability of variation nor the derivation of more specific 

diagnostic information.  Note that this paper only concerns the patient recruitment deCODE 

model, and that this exemption from attack may not apply to other aspects of the deCODE 

research and development models. In contrast, such finer-grained genotype-phenotype research 

is of interest in the three other models studied.  As such, these methods can leak relationships 

that while useful for research purposes and correlation studies, may allow for unique linkages to 

be constructed between identified and genomic data. 

 

Dictionary Attack.  With respect to the dictionary attack, the most susceptible type of model is 

that which uses a single pseudonymization function, where pseudonyms are derived from 

patient-specific information.  Since the RGE model uses random ID’s for pseudonyms, there is 

no way to run dictionary attack, regardless of the number of people re-identified through other 

means.  Nonetheless, the deCODE and Gent models are both susceptible to dictionary attacks.  In 

the deCODE model, this attack can be applied by end-users, or the researchers that request 

pseudonymized information.  The genealogies studied by deCODE contain single-encrypted 

pseudonyms based on the social security numbers of the Icelandic population.  The dictionary 

attack that the deCODE model is susceptible to is cryptographic in nature.  Basically, as more 

and more people re-identified, the adversary can collect a set of SSN, pseudonym pairs.  Given 

enough pairs, the adversary can learn the key of the pseudonymizing function. In contrast, the 

pseudonyms used in the Quebec model, as discussed above, are constructed from familial 
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relationship information.  Since this coding structure is already known, no dictionary attack is 

necessary – rather a familial-structure attack can be performed directly with the pseudonyms. 

Considering the Gent model, the dictionary attack can not be applied by requesters of 

information from the semi-trusted third party (sTTP).  This is because the pseudonyms supplied 

to the researchers are doubly-encrypted.  Though not random, it is almost impossible to discern 

the effects of the original sources pseudonymizing function from the sTTP’s.  However, a 

dictionary attack can be utilized by the sTTP itself.  In the event that the sTTP is corrupt, it can 

leverage the fact it is receiving single-encrypted pseudonyms from each of the submitting 

sources. 

 

4. Compounding Re-identification Attacks 

As presented above, in many cases a genomic data privacy protection model is susceptible to 

multiple re-identification attacks.  What is interesting to note though, is that many of the re-

identification attacks reviewed in this paper can be used in combination to assemble more robust 

re-identification methods.  As was demonstrated above, the family structure attack can be used in 

combination with a high level inference attack to construct more robust family structures or with 

a dictionary attack when additional information on the family is known.  Moreover, an iterative 

process of alternating re-identification methods can be employed.  Since different re-

identification methods exploit different types of information, one could imagine using one re-

identification method to re-identify a certain number of individuals in the population and then 

using a second re-identification method to re-identify individuals that could not be re-identified 

until certain confounding entities were removed from consideration.  This process can continue 

until no more re-identifications are possible with the known methods. 
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5. Discussion 

Based on the system analyses above, it can be concluded that pseudonymization and naïve de-

identification strategies are not sufficient mechanisms for the protection of identities. Yet, this 

realization does not imply that pseudonyms and third party solutions are worthless in the pursuit 

of genomic data privacy protection.  Rather, to an extent, these systems do provide certain 

privacy protections.  First of all, pseudonyms serve as a first-order protector and deterrent.  It is 

conceivable that an adversary, who approaches re-identification in a non-computational manner, 

will be deterred by the simple obscuring of explicitly identifiable information.  Secondly, 

datasets devoid of linkage capabilities severely limit the types of research that can be performed.  

It is often the case where researchers may need to request additional information about a subject.  

From another point of view, a subject may wish to remove their data from a research study or 

find out information about how their data is being handled. In this respect, pseudonyms provide 

an extremely valuable service by accounting for future research, applications, and auditing 

capabilities that would be virtually impossible to handle without a linkage mechanism. 

And yet, something must be done to protect the identities of the research subjects.  This research 

is a call to arms for the biomedical community.  Researchers must develop privacy protection 

methods that incorporate guarantees about the protections that they afford.  New methods must 

account for multiple environments of data sharing as well as the type of inferences that can be 

gleaned from the shared data itself.  These methods must be developed in a more scientific and 

logical manner, with formal proofs about the protection capabilities and limitations afforded by 

the specific method.  Though proofs may be difficult to derive in the face of uncertainties about 

the sharing environment, especially when the data itself holds latent knowledge to be learned at a 
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later point in time, researchers can validate their approaches experimentally against known re-

identification attacks, such as those discussed above. 

On the flipside though, researchers should not remain content with their proofs and experiments.  

New re-identification attacks will be developed by those in the academic community, and the 

adversaries that reside outside of the public realm. As such, researchers must continue to 

innovate and develop new methods re-identification for testing their protection techniques.  

These methods may new types of inferential or location-based techniques or completely new 

models that have yet to be discovered.  Regardless, without the development of new protection 

and re-identification methods, researchers will continue to rely upon untested and possibly 

dangerous methods of privacy protection.  The development of new identity protection strategies 

is paramount for continued data sharing and innovative research studies. 

 

6. Conclusion 

This research provides an analysis of the re-identification susceptibility of genomic data privacy 

protection methods for shared data.  Our results prove that the current set of privacy protection 

methods do not guarantee the protection of the identities of the data subjects.  This work stresses 

that a new direction in the research and development of anonymity protection methods for 

genomic data must be undertaken.  The next generation of privacy protection methods must take 

into account both social and computational interactions that occur in a complex data sharing 

environment.  In addition, privacy protection methods need to provide proofs about what 

protections can and can not be afforded to genomic data. 
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Appendix A 

Solving the family structure attack proof: 
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Thus, plugging in our solutions to A and C: 
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