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This work demonstrates how seemingly anonymous 
DNA database entries can be related to publicly 
available health information to uniquely and 
specifically identify the persons who are the subjects of 
the information even though the DNA information 
contains no accompanying explicit identifiers such as 
name, address, or Social Security number and contains 
no additional fields of personal information.  The 
software program, REID (Re-Identification of DNA), 
iteratively uncovers unique occurrences in visit-disease 
patterns across data collections that reveal inferences 
about the identities of the patients who are the subject 
of the DNA. Using real-world data, REID established 
identifiable linkages in 33-100% of the 10,886 cases 
explicitly surveyed over 8 gene-based diseases.  
 

INTRODUCTION 
 

DNA is understood to be as, or more, personal 
than a fingerprint. But having a database of only     
DNA entries is often believed to be anonymous 
because the data look anonymous. After all, if a DNA 
entry is not accompanied by any explicit 
demographics, how could the person who is the subject 
of the DNA be identified? Associating only DNA 
information to named persons seems impossible in this 
situation, yet this work demonstrates how the release of 
autonomous collections of DNA by hospitals, for 
example, can re-identify patients to their DNA.  

DNA sequences are increasingly becoming a 
part of the patient medical record.1  This trend is the 
result of several factors.  First, the cost of sequencing 
has been declining for over a decade due to automated 
sequencing while the storage capacity of computers has 
grown tremendously yet declined in price.  

Second, many diseases are increasingly being 
found to have a DNA component, which can be used 
for diagnostic confirmation of the presence or absence 
of a disease.  In some situations it is a deterministic 
component to disease, such as in Huntington’s disease 
and cystic fibrosis.2,3  In other situations, it acts as a 
probabilistic component that helps to establish the 
chances of being afflicted with a certain disease.4 

Third, DNA is a valuable commodity for 
institutions that release the information for research 
purposes.  Many fields from population genetics, basic 
science, and statistics are interested in such datasets.  
Recently, DNA information has been of great interest 
to the biopharmaceutical industry, for example, where 
single nucleotide polymorphisms (SNPs) and allelic 
variants of genes have shown promise for tailoring 
drugs to specific genotypes.5 

Importantly, DNA is unlike typical family 
history or the results of a patient‘s longitudinal medical 
record.  DNA has an undetermined amount of latent 
information that corresponds to undiscovered genes or 
relationships between the genotype (DNA sequence) 
and phenotype (clinical observation). 

The collection of DNA into these population-
based databases occurs at many different kinds of 
institutions. Collection can be found at government 
research sites, such as the National Cancer Institute, 
which are the result of clinical trials and basic research.  
Other collections of DNA may be found at hospitals 
like Massachusetts General Hospital or Rush 
Presbyterian of Chicago, as the result of diagnostic 
testing.  Databases of DNA sequences are harbored at 
commercial companies, such as decode Genetics, 
Celera Genomics, and Incyte Genomics, where the 
gene discovery is of high commercial value.6,7 These 
DNA collections are autonomously controlled, so 
decisions about sharing DNA data are made locally and 
independently.  
 

BACKGROUND 
 

There have been several computational 
systems presented that help render data anonymous.  
These include Scrub8, which locates personally 
identifying information in unrestricted textual 
documents, and the Datafly9 and Mu-Argus10 systems, 
which attempt to render field-structured person-specific 
databases sufficiently anonymous. Last year we 
introduced the CleanGene System, which addresses 
linear DNA information within genetic databases11. 

CleanGene computes the likelihood that a 
DNA database entry can be re-identified to the 
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particular person from which the DNA originated. It 
takes genotype-phenotype relationships into account, 
which allow for inferences to be discerned about the 
expected clinical or DNA information, depending on 
which dataset is used as the basis for inference.  When 
inferring clinical information from DNA, CleanGene 
utilizes knowledge about the type of mutation that the 
DNA harbors and discerns between different types of 
mutation to recognize a specific gene-based disease 
whose diagnosis code can appear in the clinical 
information.  For example, it is well known that 
Huntington’s disease has a strong inverse relationship 
between the size of the CAG triplet repeat expansion 
and the age of onset of the disease.2  Thus, the repeat 
size estimates the age at which the diagnosis code will 
appear in the clinical information.  

In comparison to CleanGene, this work 
addresses the situation more generally and does not 
involve any specific knowledge of genotype-phenotype 
relationships. Instead, this work uses the mere 
existence of the DNA entry in multiple data sets to 
draw inferences about where the person has been. The 
person's visit pattern is then linked to other information 
to explicitly identify the person. As a result, this 
approach is simpler than CleanGene and requires 
virtually no specialized knowledge. 

Before we describe how this new system 
works and report real-world results, we will take a 
moment to talk about publicly available hospital data 
and its identifiability. The National Association of 
Health Data Organizations (NAHDO) reported that 44 
of the 50 states (or 88%) have legislative mandates to 
gather hospital-level data on each patient vist.12  Many 
states have subsequently distributed copies to 
researchers, sold copies to industry and made versions 
publicly available. These data collections are expected 
to remain available because they are not regulated by 
HIPAA. While the publicly available versions do not 
include any explicit identifiers such as name or 
address, they do include demographic fields such as 
{5-digit ZIP, gender, date of birth}. 

Experiments were conducted to determine 
how many individuals within geographically situated 
populations had combinations of demographic values 
that occurred infrequently.13 It was found that 87% 
(216 million of 248 million) of the population in the 
United States had reported characteristics that likely 
made them unique based only on {5-digit ZIP, gender, 
date of birth}. Matching these values against a 
population register, like a voter list or local census 
data, re-identifies the result to particularly named 
individuals.14  

Therefore, the approach taken in this work is 
to link the visit pattern found in publicly available 
hospital discharge data to the pattern of entries found in 
multiple hospital DNA databases, thereby relating 

hospital discharge data to DNA entries and revealing 
demographics such as {5-digit ZIP, gender, date of 
birth} specific to DNA entries. The expanded results 
are then linked to particularly named individuals. 
 

METHODS 
 
This work concerns the development of a new software 
program named REID (Re-Identification of DNA). The 
methodology behind REID relies on the facts that DNA 
are unique to each person, has minimal change over 
time, and is becoming routinely collected and 
subsequently shared. Consider the following 
hypothetical scenario in which REID would operate.  
 

In 1994, Alice visits the University of Chicago 
Medical Center, where her is DNA sequenced as a 
diagnostic test for a particular disease.  Two years later, 
Alice receives treatment for a disorder at Rush 
Presbyterian Hospital (in Chicago).  Once again, 
Alice’s DNA is sequenced.  At both hospitals, the 
linear sequence of Alice’s DNA is stored in a DNA 
database.  There may be some variation between the 
two sets of sequences, due to random mutation during 
cell division over time, as well as difference in tissue 
type that the DNA was procured from.  However, the 
difference between Alice’s two samples of DNA would 
still be more similar to each other than Alice’s DNA 
would be to the sequences of some random individual, 
Bob. REID uses these patterns of where Alice’s DNA 
appears, along with publicly and semi-publicly 
available hospital discharge data to relate her DNA to 
her by name. 
 
DNA Hosp1
DNA1
DNA6

DNA Hosp2
DNA1 Patient Hosp1 Hosp2 Hosp3
DNA2 Patient1 DNA1 DNA1 DNA1
DNA4 Patient2 DNA2 DNA2
DNA5 Patient3 DNA3

Patient4 DNA4
DNA Hosp3 Patient5 DNA5 DNA5
DNA1 Patient6 DNA6 DNA6
DNA2
DNA6
DNA3
DNA5

 
Figure 1. DNA data to Patient-Hospital Matrix 
 
Materials 
This study uses publicly available hospital discharge 
data from the state of Illinois.  The databases cover the 
years 1990 through 1997, with approximately 1.3 
million hospital discharges per year (each database).  
Collection information has compliance with greater 
than 99% of discharges occurring in hospitals in the 
state of Illinois.15  Patient demographics, hospital 
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identity, diagnosis codes, and procedure codes are 
among the attributes stored with each database entry.  

The REID system is written in Java and uses 
Java Database Connectivity (JDBC) to connect to a 
relational database, consisting of profiles for 
individuals with diseases that have a known DNA 
basis.  These profiles are longitudinal, information over 
time, datasets, which are constructed based on the 
uniqueness of combinations of demographics of 
individuals in the hospital discharge data.  Each profile 
consists of all inpatient visits during the eight-year time 
period of this study. Figure 1 provides an example. 
 
Computer Approach 

 
Figure 2 shows the basic operation of the REID 
algorithm. The actual algorithm includes some 
attention to assumptions made in this basic operation, 
but Figure 2 does provide a description of the basic 
approach. 

The basic approach begins in Step 1 by 
constructing a matrix that itemizes which DNA is 
found at which hospitals, thereby mapping a specific 
patient to hospital visits based on DNA incidence. The 
table on the right in Figure 1 provides an example. 

In Step 3, each row in the matrix is visited and 
compared, in step 3.2, to every other row to see if the  

 

pattern of visits is unique. If there were no other 
patients exhibiting the same visit pattern, then in Step 
3.3, the information is linked to the identical 
demographic pattern found in the hospital discharge 
data to identify the {Date of birth, Gender, ZIP} 
specific to the DNA’s incidence pattern.  

The basic REID algorithm assumes that DNA 
and DISCHARGE are specific to the same disease 
gene over the same population. Today it is not the case 
that each hospital maintains its own DNA database for 
each disease gene. However, the algorithm remains the 
same if the hospital collects DNA for other diseases but 
for which the sequence includes the disease gene that is 
the subject of the re-identification. It is also not the 
case that there exists a central collection of DNA in the 
United States but some are underway.  
Assumptions. 

The basic REID algorithm also assumes that 
each patient has a unique {DOB, Gender, ZIP}. As 
noted earlier, this is only the case for 87% of the 
population of the United States. However, a ZIP chart 
is available that reports the identifiabilty of each ZIP, 
so that likelihood measures could be assigned. This is 
done in the full verision of REID, but not in the basic 
version shown in Figure 2. In the ZIP codes that are 
found in the real-world data on which the program was 
executed, the identifiability of {DOB, Gender, ZIP} 
was 98-100% unique.11  

 
 

Input: 
Table DNA(HID, Sequence), which is the union of all DNA available from hospitals specific to the disease gene. 
HID is the hospital identification number and Sequence is the DNA from HID. Table DISCHARGE(HID, DOB, 
Sex, ZIP,…), which is the union of all hospital discharge available for visits from the hospitals that include a 
diagnosis specific to the disease gene. 

Output: 
ID(Sequence, DOB, Sex, ZIP) which relates DNA sequences to identifiable demographics specific to the persons 
who are the subjects of the DNA sequences. 

Method: 
1. Construct table PATIENT(PID, HID1,…,HIDn) where PID is a sequential number starting at 1, assigned at the 

construction of the table; and, each PATIENT(HIDi) is a Sequence from HIDi in DNA and all 
PATIENT(PID=i,HIDi) is the same sequence. 

2. Let ID be empty 
3. for p ← 1 to |PATIENT| do: 

3.1. count ← 0 
3.2. for p2 ← p + 1 to |PATIENT| do: 

3.3.1. if PATIENT(PID=p, HID1,…,HIDn) ≡ PATIENT(PID=p2,HID1,…,HIDn) then do: 
3.2.1.1 count ← count + 1 

3.3. if count ≡ 0 then do: 
3.3.1. ID ← ID ∪ { {seq, dob, gender, zip} } where for each HID that has a Sequence for PID=p in 

PATIENT, there exists exclusively HIDi∈DISCHARGE having same dob, gender, zip 
associated with DOB, GENDER, ZIP, respectively. 

4. return ID 
 
Figure 2. Basic version of REID algorithm 
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Complexity. 

The computational speed of the basic REID 
algorithm provided in Figure 2 is as follows. Step 2 
executes each |PATIENT| times. Within each iteration, 
step 3.2 executes |PATIENT| times though some 
efficiency is realized. If the DNA incidence pattern is 
unique, as determined by the value of count being 0, 
then the matching pattern is sought in DISCHARGE, 
which requires a linear traversal through a matrix that 
associates patients to hospital visits; it is constructed in 
the same way as the DNA incidence matrix described 
in step 1 except rather than using DNA information, 
DISCHARGE is used. So, the overall computation 
time is O(|PATIENT|2). Therefore, on today’s 
computers, the algorithm operates in real-time. 
 
Upper limit. 

The maximum number of patients that can be 
identified by REID is limited because as the number of 
patients increase, there can be more patients that 
possible combinations of hospital visits. One way this 
limit is avoided is to prune the DNA data and the 
hospital discharge data to only examine a specific 
disease gene, as has been referred throughout. Even 
still, the computational limit on the maximum number 
of patients able to be re-identified, assuming optimal 
distribution of DNA in hospital visits is: 

12 −= HOSPITALSsMaxPatient . 
 

Disease 
Gender 

# of 
Unique 

Individuals 

# of 
Hospitals 

Average # 
People per 

hospital 

Percent of 
Cohort 

Identified

Huntington’s 
disease 426 172 2.47 50.00%
Cystic 
Fibrosis 1146 174 6.60 32.90%
PKU 772 57 1.35 75.32%
Hereditary 
Hemmor. 
Telang. 429 159 2.70 52.21%
Friedreich’s 
Ataxia  129 105 1.22 68.99%
Sickle Cell 
Anemia 7730 207 37/34 37.34%
Refsum’s 
Syndrome 4 8 0.50 100.00%
Tuberous 
Sclerosis 250 119 2.10 51.60%
Figure 3.  Selection of classes used for re-identification. 

 
RESULTS 

Figure 3 demonstrates the identifiability of different 
DNA database entries based on the REID system.  
Results are from 33-100% identified, with the success 
rate decreasing as the number of patients increase. The 

common fields used for this study were {hospital 
visited, diagnosed disease }.  The distribution of 
hospital visits skew toward more visits at hospitals that 
specialize in the treatments of certain types of 
disorders, as well as the size of the hospital.  Despite 
the coalescence of hospital visits to several hospitals, 
there are many hospitals with a smaller number of 
hospital visits.  An example of the number of hospital 
visits for a specific disease is shown in Figure 4. 

The relationship between identifiability and 
the number of hospitals and individuals in the 
discharge dataset is depicted in Figure 5.  There is an 
inverse power relationship between the average 
number of patients per hospital (which is different than 
the average number of hospital visits per hospital) and 
the fraction of the individuals in the discharge database 
that could be linked to their respective DNA database 
entries. 
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Figure 4.  Distribution of hospital visits for the DNA-
based disease tuberous sclerosis.  The gender class is 
male. The visits span 1990-1997 for all hospitals in the 
state of Illinois. 
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Figure 5.  Demonstrates the inverse relationship between 
number of individuals from a re-identified dataset that 
can be linked to a de-identified DNA dataset. 
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The power relationship does demonstrate that 
as the ratio of hospital visits to number of hospitals 
visited increases, the number of hospitals with a small 
number of hospital visits declines.   
 

DISCUSSION 
 

These DNA re-identification experiments 
demonstrate the effectiveness of REID at finding 
inferences that uniquely identify DNA to the person 
who is the subject of the DNA even when the DNA 
data itself contains no additional fields of data.   

The results are further alarming because the 
number of common features in DNA are expected to 
increase with time, thereby providing more inferences 
to other fields of publicly and semi-publicly available 
data.  This underscores privacy concerns that impact on 
the ability to conduct research16,17,18, so these problems 
must be addressed. We underscore the realization that 
DNA includes latent information that may be useful at 
a later time of study, but is not known at a particular 
time.  Such types of information may consist of SNPs 
and allelic gene variants that can be used for specific 
treatments or additional genes that have to be 
discovered that play a role in susceptibility to disease. 

The REID system architecture is not limited to 
hospital discharge and DNA databases, or even 
medical information in general.  The system is 
generalizes to other forms of data beyond DNA. 
Further, the common approaches of generalization to 
prevent linking9,10 may prove to be solutions to this 
approach provided the DNA information remains 
practically useful and not all data holders make the 
same generalizations. Other possible solutions include 
random removal or addition of DNA from the data by 
each data holder. Finally, it is important to note that 
REID did not “link” values but exploited a generally 
observed and inferable relation, making it different 
than the classic privacy problem found when sharing 
medical data.  
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