
Ed Clarke

FORE Systems Professor of Computer Science

Department of Computer Science

School of Computer Science

August 30, 2007 (11:00am)

Research Topic

Software Engineering

Research Problem

How can we practically verify specifications?

Problem Statement

Given the current sate of theory about formal models and the model checking systems in

use, develop a new implementation of model checking techniques that can be practically

and systematically applied to new specifications.

Operational Definitions

Formal model: A formal abstraction of anything that uses mathematical and logical

terminology to provide a definition.

Model checking: A method of verifying that a model is correct, often by analyzing

logical statements derived from the model.

Problem Description

Model checking is used to verify systems by an exhaustive search of the state space of the

design. One of the advantages of model checking is that it can easily prove certain things

do or do not happen; a good model can be used to verify things as general as the fact that

a microwave oven will not start heating things until the door is closed. Moreover, if our

property does not hold, it can provide states where it is not true and how to get to them.

Use of formal models to verify software has not been as extensively solved as model

checking due to some inherent issues with adapting the technique to analyze source code;

these include the large size and complexity of programs and the large, potentially infinite,

array of possible system states. Two tools have been developed for software checking:

CBMC (Bounded Model Checker, generally used for embedded systems like nVidia’s

ASICs) and MAGIC (a counterexample-guided abstraction refinement program). Both

have been tested in the field and they have so far proven their worth. Binary Decision

Diagrams are used in both tools to represent state transition systems more efficiently.

Computer Science Perspective

Proving that software will work is a desirable outcome for computer science. Software is

at the heart of most technology today, including life-and-death systems governing life

support and air control. Understanding of how to translate from source code to a formal

model that can be tested may also advance the state of computer languages.

Disciplines Actively Involved

Computer Science: This research will improve our understanding of model checking, and

while the ramifications of this may include other fields developing the actual method

requires only knowledge of Computer Science.

Operational Definition

Actively Involved Disciplines: A Discipline from which a member would be

acknowledged in the research paper or any discipline involved for which there is a

professional association that fosters more knowledge of it through the scientific method.

Description of Disciplines Involved

Computer Science: The problems of program verification

References Presenter’s homepage:

http://www.cs.cmu.edu/~emc/

Additional links:

http://www.cs.cmu.edu/%7Emodelcheck/

http://www.cs.cmu.edu/~modelcheck/tour.htm

By Sduggan (with edits from others)

Updated by plandweh

