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Abstract. We study the problem of short term wind speed predic-
tion, which is a critical factor for effective wind power generation.
This is a challenging task due to the complex and stochastic behav-
ior of the wind environment. Observing various periods in the wind
speed time series present different patterns, we suggest a nonlin-
ear adaptive framework to model various hidden dynamic processes.
The model is essentially data driven, which leverages non-parametric
Heteroscdastic Gaussian Process to model relevant patterns for short
term prediction. We evaluate our model on two different real world
wind speed datasets from National Data Buoy Center. We compare
our results to state-of-arts algorithms to show improvement in terms
of both Root Mean Square Error (RMSE) and Mean Absolute Per-
centage Error (MAPE).

1 Introduction

Wind energy has been developed significantly throughout the world
recently in order to achieve a low-emission electricity sector. How-
ever, many important issues emerge in the integration of wind farms
in the power networks for the unity of commitment and control of
power plants in electric power systems. The objective of electric
energy system operation is to maintain the balance of total supply
and demand under certain transmission constraints. Conventionally
before the integration of large-scale intermittent resources such as
wind, the operating philosophy has been controlling generation re-
sources in order to fully balance the time-varying loads. The unpre-
dictable part of loads is balanced in automated manner commonly
referred to as automatic generation control (AGC). The introduction
of large-scale wind energy into the existing power grid poses signifi-
cant challenges to the amount of reserves and the amount of control
efforts needed for balancing the system [14]. Therefore, an accurate
wind speed prediction is essential for running the future power grids
in a cost-effective and reliable manner.

The electric energy system operation is classified into several
different time scales, namely, day-ahead dispatch (unit commit-
ment), short-term dispatch, and real-time automatic generation con-
trol. Day-ahead dispatch usually occurs 24 hour ahead of the operat-
ing time, and determine the hourly ON and OFF status of all the gen-
erating units in the system. When it comes to a short-time, economic
dispatch program takes place every 30 minutes, which minimizes the
total generation cost within the transmission constraints. Daily and
hourly wind forecasts are useful information in the decision process
of Day-ahead Dispatch, whereas short-term 30 minute-ahead wind
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forecasting information is critical for efficient economic dispatch. In
this paper we focus on the <30-minute ahead wind prediction.

2 Literature Review

Various time series regression approaches have been applied to the
problem of short term wind speed prediction. Sfetsos applied various
forecasting techniques to predict mean hourly wind speed . These
techniques include linear models (ARMA), feed forward and recur-
rent neural networks (NNT), adaptive neuro-fuzzy inference systems
and neural logic networks [12]. The results show that NNT methods
are better than other linear and non-linear models within 5% in terms
of root mean square error (RMSE). Hunt and Nason treated wind
speed data as nonstationary time series and applied wavelets method
to predict 10-minute ahead wind speed data over 21 days from four
different locations in U.K. [6] . They also compared with linear base-
lines and showed their wavelet model is 20% better. Palomares-Salas
et al. compared two models, ARMA and NNT, for short term wind
speed forecasting (10 minutes, 1 hour, 2 hours and 4 hours) and the
results are very similar with average RMSE from 0.57 to 1.55 [9].
However, applying these approaches without the context of stochas-
tic wind nature makes the model very sensitive to the controlling
parameters and often do not generalize well to novel observations.

Alternatively, as the wind speed has momentum over time, it can
be treated as transitional behavior and modeled as a Markov Process.
Tore et al. (2001) used first order Markov chain models for synthetic
generation of hourly wind speed time series in the Turkey [13]. [15]
modeled both hourly wind speed and wind direction data based on
Markov chains. Shamshad et al. have generated hourly wind speed
data using first and second order Markov chains and compared the
first and second order Markov chains using wind speed data mea-
sured from two different regions in Malaysia [11]. In their study, it
was concluded that the wind speed behavior slightly improves by
increasing the Markov model order. Most recently, Hocaoglu et al.
applied Mycielski algorithm to predict the hourly wind speed data
for three locations in Turkey in the sense of forecasting future val-
ues of wind data by analyzing the repeated data in the history of the
whole data [4].

This study presents a different and novel model to tackle the short
term wind speed prediction problem. Our approach is essentially
data driven, which leverages non-parametric algorithms to locate and
model relevant sub-sequences of observation adaptively. Although
the idea of the proposed model also depends on learning from past
samples, unlike the Markov approach of building transition probabil-
ities, it considers the past data samples together during the prediction.



3 Data Analysis

We record two wind speed datasets from the National Data Buoy
Center [1], the New York area wind speed dataset (NY-ISO) and the
Calumet, IL area wind speed dataset (Calumet-ISO). The NY-ISO
dataset contains 52, 262 measurements corresponding to wind speed
in meters per second (m/s), acquired at each 10 minutes, covering
an entire year from 2006 to 2007. The Calumet-ISO dataset con-
tains 10, 471 measurements, acquired every 6 minutes, ranging from
1/1/2010 to 2/16/2010.
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(a) Wind speed time series and autocorrelation. (1) Wind speed time
series, (2) autocorrelation
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(b) Differentiated wind speed time series and autocorrelation. (1) Dif-
ferentiated wind speed time series, (2) Autocorrelation of differentiated
time series
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Figure 1: Autocorrelation analysis for time series wind speed data.

The time series behavior and the autocorrelation of NY-ISO are
depicted in Figure 1a. The autocorrelation coefficient starts at a high
value and decays quickly as the time increases. After 50 minutes,
the decay slows down and becomes stable. The differentiated time
series and corresponding autocorrelation are depicted in Figure 1b.
The near-zero autocorrelation of the differentiated time series indi-
cates that the short term autocorrelation is non-linear.

Next, we fit the both datasets with a two-parameter Weibull distri-
bution, as illustrated in Figure 2. The Anderson-Darling test shows
that neither wind speed datasets satisfies Weibull distribution as op-
posed to some previous literature claimed for their data [2, 15]. Thus,
moving average as the Maximum Likelihood Estimator of a single
distribution is not suitable for wind speed prediction. The statistical
analysis also reveals the following facts:

1. Future wind speed is strongly correlated to the very short term
historical data.

2. An appropriate regression function should be non-linear.

3. Long term historical observation contains useful information for
forecasting.
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Figure 2: Fit Wind Speed time series data with a single Weibull dis-
tribution. (a) Fitted PDF (blue line: 2-parameter Weibull) of the NY-
ISO dataset (b) Fitted PDF of the IL-ISO dataset. Both null hypothe-

ses are declined at the significance level 0.05 use Anderson-Darling
test.

4 Methodology
4.1 Notations

Motivated by the findings, we propose a novel model, Adaptive
Gaussian Process (AGP), to model wind speed. Let’s start with the
notations.

Variables
T—1
X = [Xue]l;—; -
P={P/_,Xy|Py €
RY, HPt’ - Pt” € QK}.

h={h1,..., ht,...,h7}

Summary

The raw time series data
The locality of P, k most similar
patterns to P
Random variables correspond to

the P;
w The sliding window
Pioy = [Xtow : Xe1] ~ X The local patteﬁtassociated with

Qx The space of locality
Gaussian Process function
he = h(Pt) evaluated at ¢-th local pattern
m(ht) Mean function
k(ht, hyr) Kernel function
a, A Model parameters
K =K(P,P) Kernel matrix

R = diag(r),r = (r(P))T Heteroscdastic per-sample noise

4.2 Adaptive Gaussian Process

We believe a single regression model cannot capture the dynamic
wind speed patterns under various environments, refer to Figure 4. In
fact, models constructed with irrelevant data might harm the perfor-
mance. For example, including wind speed of the night may decrease
the day-time prediction accuracy because the wind speed is usu-
ally stronger at night. Though data is collected sequentially, models
should be constructed locally. Hence, we propose a dynamic frame-
work that constructs models “locally” with strongly relevant patterns.

Let wind speed at time ¢ be X; and the entire time series can be
represented as a collection of X, X = [X,]|7_;'. We define a sliding
window as w and aggregate Py = [X:¢—» : X¢—1] to construct a
local pattern P, € R" for the target X; and denote this relation as
P, ~ X,. We define the locality of each wind speed observation X
to be its K most similar local patterns

P ={Py, Xv|Py € R",[|Py — P|| € Qx}.

For each observation X, we construct a locality for time ¢t + 1 and
use L, to forecast X;y1. We start from a coarse and quick catego-
rization, followed by successive finer but slower regression. Our pro-
posed approach uses nearest neighbor at an initial pruning stage and
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Figure 3: AGP illustration: it trains separate Gaussian Processes on the K nearest neighbors of each target P, denoted as locality P (preserving
the original distance metric), and directly obtains regression boundary. Note the + sign corresponds to a local pattern and the blue circle
indicates its locality. On the right column is the graphical models for GP regression. X, P represent observed variables and h represent
unknowns. The thick horizontal bar means the hidden variables are fully connected. Due to the marginalization property, an observation F; is

conditionally independent of all other nodes given the corresponding latent variable, h;.
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Figure 4: Different periods in the wind speed time series present di-
verse patterns, thus various dynamical processes should be consid-
ered. Note the blue, green and red parts correspond to different pat-
terns in wind speed time series. For illustration purpose, we show 3
major localities but our model generates significantly more of them.

leverages powerful regression techniques on the smaller but more rel-
evant set of examples that require careful attention, refer to Figure 3
for details. The regression model is a variation of Gaussian Process
(GP) [10] with relaxed noise assumption. Basically, a GP represent
current wind speed X by the its local pattern through a regression
model with the homoscedastic Gaussian noise,

X:=h(P) +ee~N(0,06°), 2<t<T, (1)

where h(-) is a nonlinear function such that h(P) = ¢(P)Tw. Note
¢(+) projects the inputs into some high dimensional space using a set
of basis feature space functions and a linear model is applied in this
space instead of directly on the inputs themselves. In this paper, we
use RBF functions for ¢(-) and let k(P, P') = ¢(P)¢p(P’).

KPP = atexp (—3 (P PINI(P=P)), @)

we call k(- -) a kernel function where « and A are model parameters.
The kernel function is almost o between variables when the corre-
sponding inputs are close, and decreases quickly as their distance in

the input space decreases. Such specification of kernel function im-
plies the prior on a distribution of functions. For instance, we draw
samples from a distribution of function evaluated at any number of
points, e.g. P, and write out the corresponding function distribution,

h(P) ~ N(0,k(P,P)). 3)

A Gaussian process thus defines a Gaussian distribution on the
function space h(-), assuming it is fully determined by its mean func-
tion and covariance function

m(P)
k(P, P')

E[h(P)] =0, C)
E[(h(P) = m(P))(h(P') = m(P"))].  (5)

An important marginalization property of the Gaussian Process
is that when the GP specifies (Pi, P2) ~ N(p,X), it must also
specify Py ~ N(u1,X11), where X171 is the relevant sub-matrix of
3. Thus, examination of a larger set of variables does not change
the distribution of a smaller set. This consistency requirement is
automatically fulfilled if the covariance function specifies entries
of the covariance matrix [8]. Hence, it is easy to show that when
(h(P),n(Pr)) ~ N(m([P, Pr]),k([P, Pr], [P, Pr])), then the
posterior predictive distribution of the function value hy = h(Pr)
for a future wind speed local pattern Pr is still Gaussian,

hT ~ N(m(PT), k(PT, P)) (6)

with the following mean and the variance,

Elhr] = kp(K + 021)7'X (7)
var[hr] = krr — kr (K + 021) "'kr, (8)

m(Pr) =
k(Pr,P) =

where kTT = k(PT,PT), kT = k(P,PT) and K = K(P,P)
is the kernel matrix for the training data. Remember GP assumes
i.i.d noise o for each local pattern associated with locality P. In
practice, this assumption suffers poor performance as it overlooks
the complex stochastic behavior of the wind speed environments.
To capture the high variability in wind, we must assume per sam-
ple noise. To this end, we model the noise by a function of P, thus



we get a Heteroscdastic regression problem, where the noise rate
is not assumed constant. By placing a Gaussian process prior on f
and assuming a noise rate function r(P), the predictive distribution
P(hr|Pr,P,X) at the query points Pr is a multivariate Gaussian
distribution,

hr|Pr,P,X ~ N(hr,cov(hr)) 9
hr = kplK +R]7'X, (10)
cov(hr) = krr—rr —kp[K + Rlkr, (1)

where R = diag(r) with r = (r(P))T and 7+ = r(Pr). We use
an independent GP to model the noise levels, so that this r-process
is governed by a different covariance function k., parametrized by
0. Since the noise rates 7 are independent latent variables in the
combined regression model, the predictive distribution for Ar, the
vector of regressands at points Pr changed to,

P(hr|Pr,P,X) =
ffP(hT‘PT,P,X,I‘,TT)P(I‘TT|PT,P,X)dI'd7’T. (12)

Given (r,rr), the predictive process is Gaussian with specified
mean and variance. The real difficult is thus P(r, rr|Pr, P, X) be-
cause it makes the integral difficult to handle analytically. [3] and
[7]suggested Monte Carlo approximation and full Bayesian treat-
ment, respectively. But both computation is quite time consuming. A
recent paper [5] suggested an iterative procedure to estimate the most
likely per sample noise and showed good empirical performance.

We suggest an easy way to estimate with the two rounds of opti-
mizations. First, we assume a homogeneous Gaussian noise € with
variance o2 to learn an ordinary Gaussian Process h with kernel
K,. Then, we estimate the covariance on each local pattern from
P = P U Pr. Note Eq. 11 does not depend on the Pr and we can
thus estimate the covariance error on both locality P and the Pr.
Next, we plugin the covariance error of P to form the new kernel.

K, =K, —o’Iy +0;(P)Iy. (13)

Finally the value of the future wind speed X1 is estimated as
the mean of the posterior

Xrg1 = kp(K, +021)7'X (14)

where K, is composed of the rows and columns of K, correspond-
ing to P. We can add an small noise variance o2 to our new function
hy to give robustness to the inversion of K.

5 Experiments and Discussion

Direct comparison with other literature is difficult due to the lack of
common test dataset and test-training partitions. We thus implement
three recently proposed approaches in the literature and compared
their performance with ours with the two public datasets, NY-ISO
and Calumet-1SO.

e Method 1: Autoregressive moving average (ARMA) model [9] .
e Method 2: Second order Markov Chain [11].
e Method 3: Mycielski algorithm [4].

The model efficacy is compared in Root Mean Square Error (RMSE)
and Mean Absolute Percentage Error (MAPE).

MAPE (15)

I~ |A—F

RMSE = (16)

where A; is the actual value and F} is the forecast value. We conduct
the experiments on a 2Ghz desktop with Matlab environment.

Figure 5a and 5b illustrate forecast results of different models for
a 7-day period from 2/1/2007 to 2/7/2007 of the NY-ISO data and a
7-day period from 2/1/2010 to 2/7/2010 of the Calumet-ISO data, re-
spectively. The results are depicted as markers on the graph at the end
of each day, where aggregations of MAPE or RMSE are presented.
AGP out-performances all the rest methods in both measurements.
This shows adaptive Gaussian process has advantage in handling the
high variability in wind speed time series. Note these results are data
dependent and Figure 5 should not be read as MAPE or RMSE de-
creases over time.

Table 1: RMSE and MAPE evaluation of different methods. Note
MAPE is a percentage of error while RMSE is a number indicating
the model bias.

Method Range (NY-ISO) (Calumet-ISO)
(n-min
ahead) RMSE MAPE(%) | RMSE | MAPE(%)
ond 10 1.08 9.4 0.57 12.10
order 20 1.50 14.78 0.98 19.05
MC 30 2.10 18.77 1.87 22.59
10 1.32 12.16 0.69 14.82
ARMA 20 2.05 18.48 1.04 23.54
30 2.53 22.77 2.61 27.84
10 0.96 9.79 0.58 12.37
Mycielski 20 1.74 13.41 0.89 18.38
30 1.97 17.19 1.63 22.07
10 0.65 9.02 0.54 10.2
AGP 20 1.29 12.59 0.85 15.80
30 1.60 15.43 141 17.36
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(a) Results evaluation on NY-ISO dataset. The left column figure shows AGP outperforms our base lines in terms of MAPE
and the right column illustrates our proposed method leads the RMSE performance. Note the X-axis indicates the total days
included for comparison. Row 1,2 and 3 correspond to 10-minute, 20-minute and 30-minute ahead prediction, respectively.
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Figure 5: Model Comparison, AGP, Mycielski algorithm, 2"¢ order Markov Chain and ARMA are compared in terms of MAPE and RMSE.
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Figure 6: The graph shows AGP fitting against ground truth in NY-ISO (left column) and Calumet-ISO data (right column). Note the X-axis
indicates the day of comparison. Y-axis represents the predicted value (red) and ground-truth value (blue).

Figure 6 shows the results of measured and predicted wind speed
by AGP. We only plot points of 7 days for both datasets in order
to make the figures uncluttered. Prediction results and ground-truth
are shown in red and blue curves, respectively. Overall, the predicted
wind speed based on AGP model closely follows the ground truth
patterns and captures most of the local volatility. Please note that
there some drastic changes in wind speed from 26m/s to 13m/s and
predicted wind speed can track down to 15m/s. From the zoomed
graph on the upper right corner, predicted wind speeds tracks well
with measured on a daily base. From these consecutive forecasts il-
lustrated, we observe the AGP has a strong descriptive power in han-
dling different dynamic patterns in the wind speed.

Table 1 shows the detailed results of different methods applied on
various forecasting time scale. From the results, we observe adap-
tive Gaussian process consistently outperforms other methods. For
instance, in the 10-minutes ahead prediction of NY-ISO dataset, AGP
method demonstrates significant improvments in RMSE and MAPE.
For instace, RMSE performance has imporved103% against ARMA
and 33% against Mycielski algorithm, meanwhile, MAPE has im-
proved 8% and 4% against ARMA and Mycielski algorithm. For dif-
ferent time scale, the increase rates of RMSE and MAPE for different
models are very similar from 43% (20-minute) to 120% (30-minute).

6 Conclusion

Renewable energy, especially wind energy, is recently very active
topic. While traditional methods may not meet the specific require-
ments, this paper presents a novel model for short-term wind speed
prediction for the purpose of better integration with electric energy
system. We introduce an adaptive framework to handle the high vari-
ability in typical wind speed time series data. Three models have
been compared with adaptive Gaussian process at different time
scales. The results show that AGP outperforms other models in terms
of RMSE and MAPE. Future research will focus on the real-time
power grid controller design and implementation based on the pre-
dicted wind speed.
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