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Abstract

Graphical models built on sensor networks have been used extensively in smart
home projects to improve occupancy comfort and building energy use. Simula-
tion tools use profiles of occupants to predict future building energy use. Previous
research focused on past or present occupancy and mobility. But the social inter-
actions are often ignored. In this study, we model occupancy activities by con-
structing a social network from information provided by physical sensor networks
in an open-plan office building. We propsed a Time Series Maximum Margin
Markov Network model (T'M3N) to incorporate information from evolving net-
works, e.g., number of occupants, occupant activities and indoor and outdoor C'O,
changes. We then constructed an energy simulation model of the building from
inference results. Simulation results show that energy savings reached 20% in the
demonstration building while maintaining indoor occupancy thermal comfort.

1 Introduction

The World Business Council for Sustainable Development recently published their first report on
energy efficiency in buildings stating that buildings are responsible for at least 40% of energy use
in many countries [7]. Recently, buildings began to have sensor networks installed for energy and
comfort management. The goal is to improve building operation and reduce energy consumption.
Understanding occupancy behavior is crucial to success.

Duong et al. [15] used Hidden Semi-Markov models for modeling and detecting activities of daily
living such as cooking, eating, etc., Youngblood et al. [16] introduced a new method of automati-
cally constructing Hierarchical Hidden Markov models using the output of a sequential data mining
algorithm to control a smart environment. Page et al. [9] targeted individual occupancy behav-
ior by developing a generalized stochastic model for the simulation of occupant presence with de-
rived probability distributions based on Markov Chains. Michael[12] developed software that used
bayesian belief networks and signal processing techniques to make meaningful inferences about
real world phenomena using data obtained from sensor networks. All these works focused on the
activities of individuals, however, they ignored social interactions among individuals. For example,
children running laps around a table can generate different energy needs than children sleeping.

We propose a new conceptual framework that constructs social networks that estimates human so-
cial activities from sensor network data and analyzes the result in order to save energy in buildings.
Based on complex but fix structured physical network C'O, observations, we extend the maximum
margin markov network to include a time factor for estimateevolving activities. An alternative ap-
proach might involve modeling social activities using an evolving network with mixed membership,
as described in [1].



2 Sensor Network and Data Collection

S V Office 2 Office 1

=h
priner |

Kitchen

Common Area 1
. 1
Common Are:

N I | |
IR e A N —— A

Office 6 < Office 5 | Officed 7Office 3
O ] .
@ " ] C
D] [q] D] [q] Transition Route
.C02 Sensor

Figure 1: Geometric flat view of the office area testbed.

The sensor network is setup in an open plan office space with six rooms and one kitchen/printer
room. It provides offices for two faculty members and ten Ph.D. students. Since it is an open plan
office, the faculties and students have discussions frequently. The entire indoor environment can
be considered heavily dynamic. The social network is the daily face-to-face interactions among
different members in offices. Occupants can have different activities such as reading, talking on the
phone, drop-by and discussion. In addition, an occupant may leave his own area and go to other
areas, such as printer room, kitchen, and restroom. The physical sensor network includes a wired
COs network and a data server. One C'O4 sensor is installed in the center of each office at the nose
level (1.1m) above the ground. To establish ground truth about occupancy information, we use a
network of commercial cameras. This setup is further described by Lam et al. [10]. Figure 1 shows
the geometric view of the test-bed. Note we choose C' O, sensors instead of vision ones for privacy
reasons, e.g., we cannot easily tell the difference of C'O- outputs from one to another.

Data collection for this paper was for one continuous period, with a sampling rate of every two
minutes, capturing C'Os measurements, social interactions and activities in four offices. The time
period is from January 29th to February 18th, 2008. Occupancy activity data was recorded from
8:00 am to 6:00 pm from the four offices.

3 Methodology

3.1 Overview

Our input are C'O4 observations and its derivatives in each of the 4 offices, aggregated every ten min-
utes. Note the derivative of C'O5 helps to distinguish different states, e.g., two people reading and
one people talking may have the same amount of C'O5, but their derivatives differ. We denote the fea-
ture vector X ° for office 0. The entire sequence can then be represented as the collection of feature
X = [X}, X2 X3, X}|inf,, where i indicates current time stamp. We write Y; € {l1,...,lx} C Q
as the labels and Y = [Y;}, Y2, Y3, Y;*]|I"f, . Note X? € RP represents a D-dimensional sequence
of C'O4 features extracted at time ¢ in office o while Y, is the corresponding state. In this experi-
ment, our label for each office is determined by the size of occupants times 4 possible states (stop
by, discussion, phone and reading.) K° = N° x S. If a fully connected graph structure between
offices is assumed, the full transition matrix is of size K' x K? x K3 x K*, alarge but very sparse
matrix. Our model is built on the framework of recent progresses in Maximum Margin Markov
Network (M3 N) [14] and our major innovation is to extend this model to time series by considering

the states transition probability over time.

3.2 Modeling

Our goal is to minimize a loss function defined by the following criteria. Our discriminative model
is aregularized Lo function Qx v (W) which encodes C'O, feature and transition feature function
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Figure 2: Graphical model for dynamic social activity estimation. (a) The observations are C'O4
measurements and their derivatives at time ¢ in each of the 4 offices, denoted as X. Sensors spread
across each office, composing a sensor network.. The blue nodes linked to the observations are states
in each office, denoted as Y. These variables indicate occupant activities and interactions at each
time stamp. For example, in (b), an office of 2 occupants might have many internal states. These
states are not estimated separately from the observation of a single office but together with other

offices. The joint conditional probability P(Y|X, Y) gives a more comprehensive view of office
occupant activities over time. These dynamics describe some basic activities of such an anonymized
social network.

in f(X,Y),

T
—_— 2 .
Win S IIWII Z;f (1)

st (W, 00 (X,Y)) > LY (YY) ¢
VG, VY € Q,

here &; is a slack variable to denote quality of estimated labeling Y at time ¢, T' is the size of the
training sample, « is a time decay parameter,®¢(X,Y) = fo(X,Y) — fo(X,Y) indicates the
difference between feature functions, Lo (Y, Y) defines a loss function over two label vectors and
G denotes a snapshot of the state graph structure. We use the hamming distance to measure the loss

P, 1Y, #Y
on label sequences, where Lo (Y,Y) = ZijeEA(YwaY ) and A(Ym’y ) = 0 Yj e YJ
1] — Lij
An alternative representation of function 1 eliminates the constraints as follows:
A 1 «
. A1 T & (1) 7 (9) Y
min [ W]P* + T;mgx[—w ¢ (X, Y) + L (Y, V)] )
We denote rg(w,X,Y) = —WT<I>(C§)(X,Y) + Eg) (Y,Y). Notice the global feature func-

tion f(X,Y) can be factorized into the CO; features and pairwise transition features defined
as fo(X,Y) = [fv(X,Y); fe(X,Y)] where:

fv(X,Y) = [fv(X°, V)] 1—ZT (V) ® X°, (3)
1=1

fe(X,Y) = [fe(Y")]lpgen = Y TYP) @ T(YY), )
p,geQ

where fy and fg denote node feature functions and edge feature functions, YT(Y°) =
[o,..., Liyoy, - .0]1x x defines a vectorization of a scalar Y°, enforcing Yoth element to be 1. ®



is the Kronecker product of matrices, e.g., if Aisa I x J matrix and B is a G x T' matrix, Kronecker
auB e aljB

product A ® BisaIG x JT block matrix A ® B = : :
ale N CL]JB

Thus fy(X,Y) is a vector of length KD, f(X,Y) is a vector of length K2and f5(X,Y) is thus
of length KD + K?, where K = max?_,{K°}. This is a reduced model only considers pairwise
transition probability but an extension to higher order is easily realizable use the technique [13].

Correspondingly, in this pairwise model, the parameters consist two types of weight vector, specific
to the each types of the feature function W = [W+y,, Wg]. To include the time factor, we split

Wg(t) = aWg(t) + (1 — )Wg(t — 1), (5)

where Wg(t — 1) is the weight acquired in the previous time stamp and Wg(t) is the estimation
from the current observation. Notice both W and « are variables to be estimated and the Equation
1 is non-convex.

3.3 Algorithm

Although r¢(w, X,Y) in Equation 2 is not differentiable, its subgraident depends only the most vi-
olated instance Y*(w) = arg maxy (W' (f6(X,Y) — fa(X,Y))+Lc(Y,Y)). We can compute
the subgradient of Equation 2,

T
1 . .
9W) = MW + 2 37 (f (X, Y7 (W) = fe (X, V), ©)
i=1
refer to procedure 1 of Algorithm 1 for details.

Remember we split the weight parameter Wg(¢) into two terms, a current estimation and a previous
value, balanced by a time factor . Since the joint optimization of & and Wy leads to a non-convex
optimization, we propose the following algorithm to solve it in an iterative manner.

4 Energy and Comfort Management

An estimated dynamic occupancy schedule is developed from inferenced states. To test the practi-
cality of this approach, we couple the estimated schedule with EnegyPlus [6], a widely used and well
validated energy simulation tool. The most current literature for modeling occupancy are within the
context of energy simulation. Claridge et al. [S] suggested that occupancy diversity profiles might
be derived from lighting diversity profiles through establishing a strong correlation between ob-
served occupancy and lighting levels. However, other studies suggested diversity profiles generate
misleading information when occupancy-sensing lighting controls are used [8]. Bourgeois et al. [4]
developed a sub-hourly occupancy-based control (SHOCC) coupled with the ESP-r simulation pro-
gram. SHOCC tracks individual instances of occupants and occupancy-controlled objects such as
blinds. However, its application is limited with lighting controls.

In this study, the estimated occupancy schedule was used toward both lighting and heating ven-
tilation and air-conditioning (HVAC) controls. The control strategy is updated as the estimated
occupancy states change. As our emphasis is on illustrating the utility of data-driven social behav-
ioral modeling for energy management rather than on controller design, we implement a simple
occupancy-dependent on/off control. However, more advanced controllers can achieve better per-
formance by utilizing the predicted occupancy information contained in the model.

In order to evaluate the energy saving effects and thermal comfort conditions based on estimated
scheduling strategies, we compare this predicted schedule with the fixed set-point schedule, which
is common in current office buildings. The fixed schedule has HVAC cooling set point at 24¢ and
heating set point at 22¢ from 7:00am to 6:00pm, and night set backs for cooling at 30 and heating
at 15°. An EnergyPlus model of the testbed was built up. The secondary HVAC system is under-
floor air distribution units, which assumed to have a terminal control box installed in each office.
The primary system is simply purchased hot and chilled water. Building loads are calculated from
January 29th to February 18, 2008, with TMY-3 Pittsburgh weather data, for office 1 and office 3.



Algorithm 1 Time Series Structured Learning

Output: Parameter vector w, time factor «
Initialize o < 0.5

1:

2: repeat

33 fori=1toT do

4: Call Procedure 1 with current «, record W (4).

5:  end for )

6: Fix Wy (i), Wg(i — 1) and Wg(7) to optimize «, so that the accumulation of Equation 2

over time is minimized.
7. until Convergence

Procedure 1: Subgradient Optimization.
Input: training data 7" = {(X;,Y;)}i=1,.._ 7, reguralization parameter \, tolerance ¢, time factor
«, number of iterations I and step size vy
Qutput: parameter vector W

1: Initialize W «— 0,¢ «+ 1

2: repeat

3: fori=1to7" do )
Construct Wg (i) = aWEg(i) + (1

— WE (Z — 1)

Set violation function He, (Y) = La, (Y, Y) + w” fa,(X,Y) — w7 fg,(X,Y)
Find most violated label for (X,Y) : Y = arg maxy Hg, (Y) use loopy belief
propagation [11].

7:  end for
8:  compute g(w)
9:  Update w «— w — yg(w)

10  Updatet «— ¢+ 1

11: until ¢t > 171

AN AN

5 Results and Discussions

5.1 Social Network Activity Reflection and Occupancy Estimation

Figure 3 is a reflection of learned social network activities in terms of transition probability and
Figure 4 and 5 shows the results from office 1 and office 3 for the whole testing period respectively.
X axis shows the number of data points (period) and Y axis shows the estimation accuracy. The
estimation accuracy is 73% and 75% for two offices. The occupancy estimation results are close to
underlying true office situation. Both office 1 and 3 have only two PhD students studying most of
the time. The occupancy number is usually between zero and two during the day. As it shows, there
are some abrupt changes of occupancy states where such kind of change is within a few minutes.
These changes are due to the "drop-by" activities of visitors or students in IW which happened
only a minute or two. In some of those cases, the estimation does not capture it well as the length
of our estimation window is ten minutes. However, such abrupt changes usually will not affect
the operation of HVAC system because the building mechanical system cannot response in high
frequencies. Hence, in the practical application, this abrupt change will be ignored.

5.2 Energy and Comfort

office | Fixed(kWh) | Predicted(kWh) | Savings(%) | Comfort Not Met (Hrs)
1 176 157 25 8
3 132 121 23 10

Table 1: Building Loads and Comfort Based on Different HVAC SetPoint Schedules

Table 1 shows the building loads and indoor comfort based on different HVAC set point schedules.
The results show that there is a significant energy saving by adjusting a fixed set-point to a predicted
occupancy schedule based set-point for an average of 24% for both offices, 25% for office 1 and



Figure 3: Social network activity reflected in transition probabilities. We show 4 typical scenarios.
Scenario 1 (Orange dot): the occupancy transition probability in office 4, marginalized the activity
changes; Scenario 2 (Green dot): the activity transition probability in office 1; Scenario 3 (Purple
dot): transition probability of different occupancy number and activity in one office; Scenario 4 (Red
dot): transition probability of different occupancy number and activity in different offices.
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Figure 4: Occupancy Estimation of office 1 at Figure 5: Occupancy Estimation of office 3 at
73% Accuracy of the whole Period 75% Accuracy of the whole Period

23% for office 3 respectively. At the same time, the indoor comfort not met based on ASHRAE
55-2004 standards [2] is only eight and ten hours for the whole period, respectively. Most of the
savings are from heating energy since the set-point does not require to meet when there is no oc-
cupancy inside the space. Another part of the savings comes from the dynamic ventilation control
strategy. According to the ventilation standard ASHRAE 62.1-2004 [3], different number of people
and different activities require different amount of ventilation air. Hence, the fan energy could be
saved with different occupancy numbers or activities in the test beds. The last part of the savings
comes from the dynamic light schedules. Most of the office buildings only have a fixed lighting
schedule, while in this case, the lighting schedule is dynamic with the estimated occupancy sched-
ule. In the U.S office buildings, lighting energy consumption is 30% to 40% of the total building
energy consumption, which has great potentials on energy savings.



6 Conclusion

This paper presents a framework that learns social network activities from sensor network in an
open-plan office test-bed environment. The environment closely represents a real-world scenario
where such kind of sensor system is typically found in contemporary buildings. We propose a new
Maximum Margin Markov Network model that incorporate time series information for inference
occupant interactions over time. The results of this pilot study show significant energy savings with
minimal comfort sacrifice.
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