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Abstract—A wide range of technological advances have helped
to make extensive image and video acquisition close to effort-
less. As a consequence many applications which capture image
data of people for either immediate inspection or storage and
subsequent sharing have become possible. Along with these
improved recording capabilities, however, come concerns about
the privacy of people visible in the scene. While algorithms
have been proposed to de-identify images, currently available
methods are still lacking. In this paper we propose a general
framework for the de-identification of images which subsumes
a number of previously introduced approaches. Unlike the ad-
hoc methods currently used in the field our algorithms aim at
providing privacy guarantees. In experiments on illumination-
and expression-variant face datasets we show that the proposed
algorithms achieve the desired privacy protection while minimally
distorting the data.

I. INTRODUCTION

Due to recent advances in both camera technology as well
as supporting computing hardware and software1, image and
video capture has become ubiquitous, ranging from simple
web cams pointing out a window to video surveillance net-
works offering instant access to hundreds or thousands of
cameras around inner cities [28]. Along with the increased
usage of cameras however often come concerns about the
privacy of people visible in the images [10], [25]. This
question was raised most recently in connection with the
introduction of Google Street View, a map service which offers
high-resolution street-level images of a number of cities, in
some cases depicting people in embarrasing situations [16].

For many applications the situation is often portrayed as a
mutually exclusive choice between functionality on one side
and privacy on the other. However, many uses of image and
video capture do not require knowledge of the identity of
people visible in the scene. In [31] a system is described
which tracks the number of people appearing on a street
corner in New York City by counting faces in the context
of a bio-terrorism surveillance application. Similarly, Senior
et al. [27] propose a video surveillance system which displays
identity-obscured video to a security guard while storing the
raw video cryptographically secured for subsequent retrieval
by law enforcement, if necessary.

These examples make the case for the de-identification of
image data. Privacy protection methods are well established
for field-structured data [32], especially medical data [30].
While a number of algorithms have been proposed to achieve
privacy protection for images as well, current methods are still
lacking. In this paper we propose a novel general framework
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1Relevant improvements include all system components such as processor
speed, data storage capacity, speed of wireless communication, image com-
pression algorithms, etc.

for the de-identification of images which subsumes a number
of previously introduced approaches. Special emphasis will
be placed on providing privacy guarantees for the resulting
images as well as preserving as much of the original signal
as possible. The work presented here concentrates on face
images. While other modalities have been used for (automatic)
human identification and verification from images or video
(e.g. iris [6], ear [24], and gait recognition [4], [26]) face
recognition is the most mature field, looking back at more
than 30 years of research [18], [34].

The remainder of this paper is organized as follows. In
Section II we give an overview of related work on image
de-identification methods. We then introduce our framework
and privacy protection models in Section III. In Section IV
we discuss two de-identification algorithms which implement
privacy protection models defined in Section III.

II. RELATED WORK

Currently available image de-identification algorithms fall
into one of two groups: ad-hoc distortion methods and the k-
Same [22] family of algorithms implementing the k-anonymity
protection model [30]. In this section we describe both ap-
proaches in detail (Sections II-A and II-B). In Section II-C
we demonstrate shortcomings of k-Same as motivation to our
new framework introduced in Section III.

A. Ad-hoc De-Identification Algorithms

Across a number of different communities including human
computer interaction, computer vision, and computer sup-
ported cooperative work (CSCW), the problem of protecting
privacy of people visible in images has been addressed. The
majority of approaches employ simple obfuscation methods
such as blurring (smoothing the image with e.g. a Gaussian
filter with large variance) or pixelation (image subsampling)
[2], [17], [21], [33]. While these algorithms are applicable to
all images, they lack a formal privacy model. As a conse-
quence no guarantees can be made that the privacy of people
visible in the images is actually protected. Privacy protection
is evaluated, if at all, only in human subject studies. It has been
shown that these naı̈ve algorithms are easy to defeat [22] and
typically neither preserve privacy nor the utility of the data
[12].

Alternatively, other approaches mask the areas of an image
deemed sensitive [8], [9], [11], [19]. Similarly, the PrivacyCam
architecture proposed by Senior et al. [27] suppresses automat-
ically segmented foreground objects in the scene and crypto-
graphically secures access to the video stream(s) produced by
the system. As a consequence of the masking, most of the
characteristics of the foreground objects are lost. Different



Fig. 1. Overview of the k-Same algorithm. Images are de-identified
by computing averages over the closest neighbors of a given face in
H and adding k copies of the resulting average to Hd.

versions of naı̈ve de-identification algorithms are available
commercially.2

Phillips [23] proposed an algorithm for privacy protection
of facial images through reduction of the number of eigen-
vectors used in reconstructing images from basis vectors. A
direct trade-off between privacy protection and data utility is
established through the introduction of the privacy operating
characteristic (POC), a plot similiar to a receiver operating
characteristic (ROC) often used in pattern classifier design [7].

A different approach to dealing with privacy issues in image
processing was recently proposed by Avidan and Butman [1].
They use secure multi-party computation methods to perform
image analysis tasks such as face detection without revealing
the image content to the entity processing the data. While
this approach avoids the need to de-identify images, the most
secure version of the algorithm is comparatively slow.

B. The k-Same Framework

The k-Same family of algorithms [12], [15], [22] implement
the k-anonymity protection model [30] for face images. Given
a person-specific3 set of images H = {I1, . . . , IM}, k-Same
computes a de-identified set of images Hd = {Id

1, . . . , I
d
M} in

which each Id
i indiscriminately relates to at least k elements

of H . It can then be shown that the best possible success rate
for a face recognition algorithm linking an element of Hd to
the correct face in H (independent of the algorithm used) is 1

k .
See [22] for details. k-Same achieves k-anonymity protection
by averaging the k closest faces for each element of H and
adding k copies of the resulting average to Hd. See Figure 1
for an illustration of the algorithm.

While k-Same provides provable privacy guarantees, the
resulting de-identified images often contain undesireable ar-
tifacts. Since the algorithm directly averages pixel intensity
values, even small alignment errors of the underlying faces
cause “ghosting” effects. To overcome this problem a model-
based extension to k-Same, referred to as k-Same-M was

2Eptascape (http://www.eptascape.com) overlays the output of a tracking
system with a mask. Emitall scrambles compression coefficients in regions of
interest http://www.emitall.com/.

3In a person-specific set of faces each subject is represented by no more
than one image.
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Fig. 2. Examples of de-identified face images. Faces shown in (a)
were de-identified using the appearance-based version of k-Same.
Due to misalignments in the face set, ghosting artifacts appear. Faces
in (b) were de-identified using k-Same-M, the model-based extension
of k-Same. In comparison, the images produced by k-Same-M are
of much higher quality.

introduced in [15], which fits an Active Appearance Model
(AAM) [5], [20] to input images and then applies k-Same
on the AAM model parameters. The resulting de-identified
images are of much higher quality than images produced by k-
Same while the same privacy guarantees still hold. See Figure
2 for examples.

k-Same selects images for averaging based on raw Eu-
clidean distances in image space or Principal Component
Analysis coefficient space [22]. In order to use additional
information during image selection such as gender or facial
expression labels, k-Same-Select was introduced in [12]. The
resulting algorithm provides k-anonymity privacy protection
while preserving data utility as evidenced by both gender
and facial expression recognition experiments. See Figure
3 for examples comparing the k-Same and k-Same-Select
algorithms.

C. Shortcomings of the k-Same Framework

k-Same assumes that each subject is only represented once
in the dataset H , a condition which is often not met in practice.
Since k-Same uses the nearest neighbors of a given image
during de-identification, the presence of multiple images of
the same subject in the input set can lead to lower levels of
privacy protection. To demonstrate this we report results of



(a) k-Same

(b) k-Same-Select
Fig. 3. Examples of applying k-Same and k-Same-Select to ex-
pression variant faces. Since k-Same-Select factors facial expression
labels into the image selection process, facial expressions are pre-
served better (notice the changing expression in the first row). Both
algorithms provide k-anonymity privacy protection.

Fig. 4. Examples of images used in recognition experiments. We
use frontal images of more than 200 subjects from the CMU Multi-
PIE database under five illumination conditions, displaying a range
of facial expressions (shown here are neutral, squint, smile, and
disgust). In the experiments, faces are represented by the appearance
coefficients of an Active Appearance Model [5], [20].

experiments on the CMU Multi-PIE database [14]. Each face
in the dataset is represented using the appearance coefficients
of an Active Appearance Model [5], [20]. See Figure 4 for
examples. Recognition is performed by computing the nearest
neighbors in the appearance coefficient space. We employ
images of 203 subjects in frontal pose and frontal illumination,
displaying neutral, surprise, and squint expressions. k-Same
fails to provide adequate privacy protection. Figure 5 shows
face recognition accuracies for varying levels of k. Accuracies
stay well above the 1

k rate guaranteed by k-Same for datasets
with single examples per class We obtain similar results
even when class information is factored into the k-Same de-
identification process. We can conclude that k-Same does not
provide sufficient privacy protection if multiple images per
subject are included in the dataset.

k-Same operates on a closed face set H and produces a
corresponding de-identified set of faces Hd. Many potential
application scenarios for de-identification techniques involve
processing individual images or sequences of images. k-Same
is not directly applicable in these situations. Due to the
definition of k-Same, extensions for open-set de-identification
are not obvious.

(a) k-Same on expression-variant face data

(b) k-Same on illumination-variant face data

Fig. 5. Rank-1 recognition accuracies of images de-identified using
k-Same. The underlying image set contains multiple faces per subject.
In (a) we show recognition accuracies after applying k-Same to a sub-
set of the CMU Multi-PIE database containing multiple expressions
(neutral, surprise, and squint) of each subject. Recognition accuracies
exceed 1

k
by far, indicating lower levels of privacy protection. In

(b) we show recognition accuracies after applying k-Same on an
illumination-variant subset of Multi-PIE. Again, accuracies exceed 1

k
for lower levels of k.

III. FORMAL MODELS FOR FACE IMAGE
DE-IDENTIFICATION

In this section we describe our proposed framework for
image de-identification. We start by providing background
definitions in Section III-A. We then introduce the proposed
de-identification framework in Section III-B. In Section III-C
we describe relevant application scenarios.

A. Basic Definitions

While applications discussed here use face images or im-
age sequences, all mathematical derivations are in terms of
general vectors. In order to ensure comparability between
vector dimensions, faces have to be registered and aligned.
We use one of two procedures for face alignment: appearance-
based coding where we align faces using manually established



feature points or model-based coding where a previously
learned Active Appearance Model [5], [20] is fit to the image
and the resulting model parameter vector is used to encode
the image. In the following we assume all face images to be
encoded as m-dimensional vectors.

At the core of our framework is the notion that the set of all
images of a person’s face can be described compactly using a
model learned from data.

Definition III.1. Face Model
We refer to the parametric or non-parametric model represen-
tation computed from a set of faces of a subject s as Fs.

Definition III.2. Subject-Specific Image Sets
The subject visible in an image is indicated using subscriptes
when necessary, e.g. Is for an image I of subject s. If a set
of images Γ = {Is,1, . . . , Is,t} of the same subject s is used,
we assume it to be known that the images are coming from
the same subject, although the subject identity is not generally
known. We then refer to Γ as being subject-specific.

The stated goal of face de-identification is to thwart face
recognition. We perform recognition by evaluating the proba-
bility of input faces given a set of known models.

Definition III.3. Face Recognition
Given a gallery set of face models G = {F1, F2, . . . , Fl}
known to the algorithm we evaluate p(Fi|P), i = 1, . . . , l for
the probe image P and assign P to the subject j for which
p(Fj |P) > p(Fi|P),∀i 6= j. This process extends naturally to
probe sets of images.

We then define face de-identification as a transformation
function.

Definition III.4. Face De-Identification
Face de-identification is defined as a function ΨR : IRm →
IRm with respect to a reference setR = {R1, . . . , Rm} of face
models. ΨR associates each input image I with a vector of
equal dimensionality: ΨR(I) = Id. Ψ may be parameterized
so that the functional mapping is ΨR : IRm × IR→ IRm.

The principal challenge in designing de-identification meth-
ods lies in striking a balance between privacy on one side
and data usability on the other side. The following definition
captures our notion of data usability:

Definition III.5. Data Utility
We define data utility as function Φ : IRm → IR which
assignes a utility score to an m-dimensional image vector.

Examples for data utility functions for face image data
include gender and facial expression classification accuracies
as well as raw image distances. Figure 6 shows an overview
of the definitions.

B. Privacy Protection Models
Intuitively, the goal of this work is to find de-identification

functions Ψ for which p(Fi|Ψ(Ii)) < p(Fi|Ii) with
Φ(Ψ(Ii)) ≈ Φ(Ii), i.e. protect privacy while preserving data
utility. More formally we define the goal as follows:

Fig. 6. Overview of the definitions. Images Ii in the input set Γ are
de-identified to images Id

i . During de-identification the reference set
R is used. Privacy protection is measured by using the de-identified
image set Γd as probe in face recognition experiments with the gallery
set of face models G. The utility of de-identified faces is measured
using the data utility function Φ.

Definition III.6. Image De-Identification Problem
Given a subject-specific set of images Γ =
{Is1,1, Is1,2, . . . , Is1,l1 , Is2,1, . . . , Isn,ln} find a de-
identification function ΨR : Γ → Γd with
Γd = {Id

s1,1, I
d
s1,2, . . . , I

d
s1,l1

, Id
s2,1, . . . , I

d
sn,ln
} so that

Γd adheres to the privacy protection model Θ with respect to
the reference set R of face models.

In the following we define three privacy protection models:
ε-map, wrong-map and (ε, k)-map, which are closely related
to the privacy protection models proposed in [29], [30].

Definition III.7. ε-map
We say that ΨR : Γ → Γd provides ε-map protection if
p(Ri|Ψ(I)) < ε, ∀Ri ∈ R,∀Id ∈ Γd.

As we will argue later, all ad-hoc de-identification methods
can be interpreted as naı̈ve implementations of ε-map protec-
tion. As strategy, ε-map could be described as “make it look
like noone”.

Definition III.8. wrong-map
ΨR : Γ → Γd provides wrong-map protection if
p(Ri|Ψ(Ij)) > p(Rj |Ψ(Ij)), ∀Id

j ∈ Γd.

As strategy, wrong-map could be described as “make it look
like someone else”.

Definition III.9. (ε, k)-map
ΨR : Γ → Γd provides (ε, k)-map protection if ∀ Id

i ∈
Γd ∃Ri1 , . . . , Rik

∈ R with ‖p(Rij |Id
i )− p(Ril

|Id
i )‖2 < ε.

As strategy, (ε, k)-map could be described as “make it look
like everyone”. (ε, k)-map is similar in spirit to the (c, t)-
isolation concept proposed in [3]. Depending on the specific
application needs one or multiple de-identification strategies
might be appropriate.



(a) Office Building (b) Street Corner

Fig. 7. De-identification application scenarios. In the office building scenarion (a) faces to be de-identified come from a known set of subjects
so the gallery can be used. In the street corner scenario (b) subjects to be de-identified are not known a priori so a generic reference face
set has to be used.

C. Application Scenarios

As described in Section II-B the previously proposed k-
Same algorithm is defined for static, closed sets of faces [22].
Typical real-world scenarios in which facial images might
be captured, however, are often different. We are particularly
interested in two scenarios:

• Office Building
The reference face model set used during de-identification
is the gallery. An example for this scenario is an office
building in which faces to be de-identified come from
a known set of people, the employees working at that
location. See Figure 7(a) for an illustration.

• Street Corner
Here the de-identification algorithm does not have access
to the gallery. As a consequence a generic reference face
set is used. An example for this scenario is a street corner
at which it is not known a priori which people will appear.
See Figure 7(b) for an illustration.

IV. DE-IDENTIFICATION ALGORITHMS

In this section we describe algorithms for ε-map (Section
IV-A) and (ε, k)-map protection (Section IV-B). We will
assume all face models a priori to be equally likely and re-
place the a posteriori probabilities p(Ri|Ψ(I)) with the class-
conditional density functions p(Ψ(I)|Ri), following Bayes’
rule [7].

A. Algorithm for ε-map Protection

As pointed out in Section II naı̈ve de-identification methods
typically apply simple distortion methods such as blurring or
pixelation [2], [17], [21], [33]. Intuitively, these approaches
strive to implement ε-map protection (see Definition III.7),
However, since ad-hoc methods do not factor in reference
models, privacy is typically not appropriately protected. The
algorithm we propose here simply exhaustively searches for
the minimal parameter l for a given de-identification function

input : Face image set Γ, reference face model set R,
de-identification function Ψ parameterized by
l ∈ CΨ = {l1, . . . , lt}, privacy parameter ε

output: De-identified face set Γd

for I ∈ Γ do
i← 0
while i < t do

if p(Ψ(I, li)|Rj) < ε ∀Rj ∈ R then
break

else
i← i + 1

end
end
Id ← Rand(Ψ(I, li))

end
Algorithm IV.1: Algorithm for ε-map protection.

Ψ to fulfill ε-map protection. See box IV.1 for a definition of
the algorithm. For de-identification functions which remove
increasing amounts of information from images for higher
parameter settings (e.g. blurring with increasing kernel size),
the algorithm is guaranteed to converge, in the worst case
to a uniform image. Note that we included a randomization
step which adds small, visually undetectable perturbations to
the image. This renders common re-identification techniques
ineffective (see below).

We evaluate the algorithm using expression-variant images
from 150 subjects from the CMU Multi-PIE database [14].
We use a simple normal distribution model over image space
distances to compute p(Ψ(I, li)|Rj) from the distance between
the de-identified image and the reference model. Here a
single gallery image is used as reference model (application
scenario (a) in Figure 7). Figure 8(a) shows rank-1 recognition
accuracies of a nearest-neighbor classifier on images de-
identified using ad-hoc pixelation. In the experiments we used



(a) Ad-Hoc Pixelation (b) ε-map Pixelation

Fig. 8. Rank-1 recognition accuracies of a nearest-neighbor classifier for different pixelation algorithms. (a) shows results from the ad-hoc
algorithm which applies the same level of pixelation to each image. Comparatively high pixelation levels are necessary to ensure sufficient
privacy protection. The algorithm is easily defeated using automatic re-identification. (b) shows results from the ε-map algorithm (with ε
ranging from 1e− 3 to 1e− 7. Automatic re-identification is prevented using a random perturbation step in the algorithm. A more gradual
reduction in recognition accuracies is achieved while requiring comparatively lower levels of pixelation than the ad-hoc algorithm.

neutral expressions as gallery and smile expressions as probe.
Comparatively high levels of pixelation are necessary to ensure
sufficient privacy protection for the ad-hoc algorithm. Pixe-
lated images can be re-identified effectively by automatically
detecting the pixelation level, applying the same pixelation to
the gallery and running the classifier. This is termed parrot
recognition in [22]. In contrast the random perturbation step
in the ε-map algorithm prevents automatic parrot recognition,
so re-identification is thwarted (see Figure 8(b)). The ε-map
algorithm offers a more gradual reduction in recognition accu-
racies with decreasing ε levels, while requiring comparatively
lower levels of pixelation then the ad-hoc algorithm.

B. Algorithm for (ε, k)-map Protection

The goal for (ε, k)-map protection is to let the de-identified
image “blend in with the crowd” [3] by modifying it to be
equally likely under multiple face models. Intuitively we could
encode this goal directly by finding the de-identified vector Id

as solution to a minimization problem which equalizes the
likelihood of Id under all face models Ri in the reference set:

Id = arg min
I′

∑
m,n

‖p(I′|Rm)− p(I′|Rn)‖2

This equation however is minimized by the trivial solution
I′ = 0 and it does not factor in the magnitude of change from
the original data vector. A better approach is therefore to find
the de-identified vector Id as update to the original data vector
I: Id = I + ∆I and compute the update ∆I as solution to the
minimization problem

arg min
∆I

∑
m,n

‖p(I+∆I|Rm)−p(I+∆I|Rn)‖2 +λ‖∆I‖2 (1)

with reference face models Rm, Rn. The resulting de-
identified vector Id is equally likely under all models and can
therefore not be reliably identified. The regularization term

‖∆I‖2 ensures that a solution is found which minimally alters
the original data vector.

Many possibilities exist for the modelling of the class-
conditional density function p. In its simplest form we can
use a unit variance normal distribution over reference images
which reduces Eqn. (1) to an expression minimizing the
pairwise distances

arg min
∆I

∑
i,j

∥∥‖I + ∆I− Ii‖2 − ‖I + ∆I− Ij‖2
∥∥2

+ λ‖∆I‖2

(2)
for the reference images Ii, Ij . For a given set of images Ii, Ij

and an input image I we can compute ∆I directly as least-
squares solution to the equivalent expression∑

i,j

‖2∆IT Ij − 2∆IT Ii + ci,j‖2 + λ∆IT ∆I (3)

with ci,j = ‖Ii‖2−‖Ij‖2 +2IT Ij−2IT Ii. All constraints for
∆I can be combined into a single linear system

Q2,1,λ

Q3,1,λ

...
Qn,n−1,λ

∆I =


− 1

2c1,2∆I2,1

− 1
2c1,3∆I3,1

...
− 1

2cn−1,n∆In,n−1

 (4)

with Qj,i,λ = ∆Ij,i × ∆Ij,i + λ
4I and the identity matrix

I. The system in Eqn. (4) can be solved directly, achieving
privacy protection at the ε = 0 level. The constraints for a set
of images can be combined into an even larger linear system
and then solved concurrently.

We evaluate the algorithm using images of 249 subjects
from the CMU Multi-PIE database [14] recorded in frontal
pose and displaying neutral expressions. Images of five illumi-
nation conditions per subject are included in the dataset. Here,
one illumination image is used as probe and four images per



Original k=2 k=3 k=4 k=5

Fig. 9. Example images showing the results of applying the proposed
algorithm to images of the Multi-PIE database.

Fig. 10. Rank-1 recognition performance using a nearest-neighbor
classifier on images de-identified with the (ε, k)-map algorithm with
ε = 0. The underlying dataset contains five images each of 249
subjects from the CMU Multi-PIE database. Performance stays below
the 1

k
-level unlike in the case of images de-identified using k-Same

(see Figure 5(b)).

subject are used in the gallery. Figure 9 shows example images
of faces at different levels of de-identification. Figure 10 shows
rank-1 recognition accuracies of a nearest-neighbor classifier
on images de-identified with the (ε, k)-map algorithm (with
ε = 0). Even though the reference set contains multiple images
per subject, the algorithm is able to produce appropriately de-
identified images.

V. DISCUSSION

In this paper we introduced a general framework for image
de-identification and described three privacy protection mod-
els: ε-map, wrong-map, and (ε, k)-map. Our framework sub-
sumes previously proposed ad-hoc methods such as pixelation
and blurring and extends the k-Same family of algorithms.
We described two algorithms implementing the ε-map and
(ε, k)-map models. In experiments using images from the
CMU Multi-PIE database we demonstrated successful de-
identification as measured using a simple nearest-neighbor
classifier. In previous work we experimentally showed that
commercial face recognition systems did not perform better

than predicted by the protection model [12]. We plan on
repeating these experiments with the newly proposed de-
identification algorithms.

The de-identification algorithms discussed here can operate
directly on images as well as on parameter vectors extracted
using Active Appearance Models [5], [20]. As a consequence,
integration of de-identification into our real-time face tracking
system [13], [20] is straightforward.
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