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Abstract. With the proliferation of inexpensive video surveillance and
face recognition technologies, it is increasingly possible to track and
match people as they move through public spaces. To protect the privacy
of subjects visible in video sequences, prior research suggests using ad
hoc obfuscation methods, such as blurring or pixelation of the face. How-
ever, there has been little investigation into how obfuscation influences
the usability of images, such as for classification tasks. In this paper, we
demonstrate that at high obfuscation levels, ad hoc methods fail to pre-
serve utility for various tasks, whereas at low obfuscation levels, they fail
to prevent recognition. To overcome the implied tradeoff between pri-
vacy and utility, we introduce a new algorithm, k-Same-Select, which is
a formal privacy protection schema based on k-anonymity that provably
protects privacy and preserves data utility. We empirically validate our
findings through evaluations on the FERET database, a large real world
dataset of facial images.

1 Introduction

Walk through the streets of any metropolitan area and your image is captured
on an ever increasing number of closed-circuit television (CCTV) surveillance
cameras and webcams accessible via the Internet. Consider some recent statistics.
As of 2002, a survey of New York City’s Times Square revealed there exist
over 250 different CCTV’s in operation [1]. In addition, researchers with the
Camera Watch project of Carnegie Mellon University estimate that there are
over 10,000 webcams focused on public spaces around the United States [2].
The dramatically decreasing costs of surveillance equipment and data storage
technologies guarantees that these numbers will continue to increase.
Surveillance systems, including automated face recognition, must be held ac-
countable to the social environments in which they are implemented [3]. Given
the ubiquity with which surveillance systems are creeping into society, protec-
tion of images already captured and stored, must be developed. Currently, most
attempts at enabling privacy in video surveillance and automated face recogni-
tion systems have been approached from an ad hoc perspective. For instance,
researchers studying telecommuting have investigated the degree to which simple
de-identification methods, such as “blurring” or “pixelating” an image, prevents
the recipient of the image from determining the identity of the individual [4,5].



In these studies, it has been repeatedly demonstrated that identity is sufficiently
protected. As a result, the European Union’s directive 95/46/EC of the Data
Protection Act explicitly states that once an image is pixelated, it can be shared
for research or law enforcement purposes. A simple Internet search produces sev-
eral companies specializing in the development and commercialization of privacy
protecting surveillance equipment - the justification being that their system can
pixelate images.*

While simple filtering methods might prevent a human from recognizing sub-
jects in an image, there is no guarantee that recognition will always be thwarted.
Moveover, a computer that applies face identification and recognition technology
is much more adept at seeing through the obfuscation. Thus, when ad hoc de-
identification methods are tested against automated recognition systems, there
is evidence that claimed protections are nothing more than superficial [6]. As
a result, it is a naive and dangerous assumption that simple de-identification
methods provide privacy protection. Now that such techniques have been incor-
porated into various legal statutes, we suspect that it is only a matter of time
before lawsuits challenging the Data Protection Directive and similar specifica-
tions will begin.

In prior research, it was demonstrated that face recognition can be sufficiently
thwarted using models built on formal privacy methods [6]. The k-Same algo-
rithm, provides the guarantee that a face recognition system can not do better
than 1/k in recognizing who a particular image corresponds to. Moreover, this
level of protection will hold up against any recognition system, human or com-
puter, such that it is unnecessary to experimentally validate if images subject
to the k-Same algorithm will be sufficiently protected. However, though privacy
can be guaranteed, there is no accompanying guarantee on the utility of such
data. In previous research, it was demonstrated that k-Samed images look like
faces, but it is unknown if the image communicates information necessary for
surveillance or classification purposes.

The goal of this paper is two-fold:

— Provide experimental evidence regarding how ad hoc methods can not si-
multaneously protect privacy and provide data utility in face images, and

— Develop and demonstrate an algorithm which provides formal privacy pro-
tection that maintains data utility on classification challenges, such as gender
and expression characterization.

The remainder of this paper is organized as follows. In Section 2 we survey related
work. Section gives an overview of the face recognition algorithms used in the
experiments. Section 4 defines face de-identification and introduces the k-Same-
Select algorithm. In Section 5 we evaluate privacy protection and data utility for
both ad hoc and formal protection algorithms. We conclude by discussing the
findings of the paper in 6.

! For example see IES Digital’s “SiteScape®” - http://www.iesdigital.com/pdfs/
ssbrochure.pdf.



2 Related Work

In this paper we investigate technical issues regarding anonymity in face recog-
nition systems. This issue is a specific topic within the more general area of how
to protect privacy in communicated images. In this section, we briefly review
several proposed methods and the difference between formal models of privacy
and ad hoc strategies. It should be noted that this research concerns the degree
to which anonymity can be guaranteed from a technological perspective and,
as such, we do not consider issues regarding security or policy concerns, such as
who is permitted to view the images, time limits on image storage, or encryption
strategies for secure storage and communication.

There exist a number of methods by which an image can be obfuscated for pri-
vacy protection. In particular, proposed methods include pixelation and various
distortion filters, such as replacement of an image with a shadow, thresholding
for edge presentation only, and Gaussian blurs [4,5,7—11]. This set of obfuscating
techniques prevent the rendering of the original image, but they do not provide
intuition as to whether or not privacy is maintained. To test if these techniques
do protect privacy, researchers investigate the degree to which these methods
fool human observers of the obfuscated video [7,10,11]. Researchers ask individ-
uals if they can tell what they are observing, such as ”Can you determine the
gender of the subject in the video?” or ”Can you determine who specifically is
in this video?”. If the human can not answer such questions correctly, then it is
claimed that privacy is being protected.

The previous is a feasible model of privacy, provided the entity receiving
the video is a human without access to accompanying information, such as a
database of images to compare the incoming video to. Senior et al. [12] note
that if the human or computer on the receiving side of the obfuscated video has
access to references images (e.g. non-obfuscated images of the video subjects),
then care must be taken to ensure that transmitted images do not reveal infor-
mation which can be used to match to a reference image. In this space, we must
take into account how the obfuscation affects an automated systems’ ability to
systematically analyze the video and perform identity determination through
such techniques as face, gait, or scene (e.g. location) recognition. Through a
prototype called PrivacyCam, Senior et al. demonstrated how incoming video
feeds can be segmented, stored in a database, and managed using multi-level
security techniques. The type of segmentation process, and the semantics of the
segments, are ultimately controlled by the operators of the camera, but they can
correspond to a wide range of features, from a general background vs. foreground
to a more specific characterization of the individuals observed in a scene. Once
the video is segmented, it can be generalized or granulated, depending on the
access level of the individual requesting to view the video. For instance, a public
transportation manager needs to know the number of people per subway stops,
while a public health investigator may need more detail in terms of facial ex-
pression to see if the people are coughing or sneezing. In order to facilitate levels
of access, the authors recommend that each segment be revealed at a different
levels of granularity per access level. For very basic scene analysis, each segment



could be tracked using a different color (e.g. background displayed as the color
black and individuals in the foreground displayed as blue)

Though Senior et al. present a privacy protection schema, there are no proofs
or empirical analysis of whether or not their methods defeat recognition systems.
Rather, this task was first addressed in 2003 by Alexander and Kenny, who
investigated how individuals can fool automated face recognition systems. [13].
In their study, they consider ad hoc methods, such as when the subject wears
sunglasses, paints their face with various designs, and shines a laser pointer at
the lens of the camera. Their findings reported recognition rates at varying levels
of such protection (e.g. the level of tint in the sunglasses) and provided levels at
which the computer could not complete correct recognition. Yet, this evaluation
of privacy is performed with the belief that the computer is not adaptive. For
example, the authors submit an image of a subject wearing sunglasses and probe
a database of faces in which no one is wearing sunglasses. This is a naive strategy,
since the computer (or the human provided with obfuscated image) can detect
how an image has been augmented.

The issue of adaptive recognition is a serious and realistic concern, which
is addressed in recent research by Newton et al. [6]. In their analyses, they as-
sume a computer can mimick the obfuscation technique within the recognition
system’s gallery of images. They demonstrated that recognition rates of obfus-
cated images against nonobfuscated images are low as observed by Alexander
and Kenny [13]. However, the recognition rates soar when the computer can
augment the gallery of searched images. In certain cases it was discovered that
obfuscation, such as pixelation, actually increases recognition rates above the
baseline tests. Newton et al. [6] concluded that the main reason why ad hoc
methods of privacy protection in video and face recognition systems are falli-
ble is because there is no formal model of how privacy can be compromised or
protected. To rectify this concern, Newton et al. [6] proposed a new obfuscating
model called k-Same. The details of the k-Same method are discussed below,
but from a model perspective, it is a formal protection strategy based on the
k-anonymity framework of Sweeney [14]. In general, k-anonymity stipulates that
for every piece of protected data, there must exist k pieces of data in the original
dataset to which the piece of data could be representative of. Translated to the
k-Same model, each face image presented to a face recognition system could be
representative of k faces in the gallery.

The version of k-Same introduced in [6] protects privacy and preserve detail
in facial structure, however, there are no guarantees of the utility of the data
(e.g. “What is the gender of the face?” or “What is the face’s expression?”).
In this paper, we investigate how utility can be incorporated into the k-Same
model of privacy protection.

3 Face Recognition Algorithms

Automatic recognition of human faces has been an active area of research in com-
puter vision and related fields since the 1970s [15,16]. In this section we describe



in detail the two face recognition algorithms used in experiments: 1) Principal
Component Analysis, a standard academic benchmark and 2) the commercial
face recognizer Facelt, which was among the best performing systems in the Face
Recognition Vendor Test of 2000 [17] and 2002 [18].

3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a method for the unsupervised reduc-
tion of dimensionality [19]. An image is represented as an n-dimensional vector,
where each dimension corresponds to a pixel. Given a set of N sample images
{z1,%2,..., 2N}, we define the total scatter matrix Sp = Zg:1(xk —p) (g —p)T
where g is the mean of the data. PCA determines the orthogonal projection @
in

ye =P xp, k=1,...,N

that maximizes the determinant of the total scatter matrix of the projected
samples y1,...,ynN:

Dopt = arg max | T S1d |= [p162 . .. D)

where {¢;|i = 1,2,...,m} are the n-dimensional eigenvectors of St correspond-
ing to the m largest eigenvalues (typically m << n). In order to compare two
face images x and y in a PCA subspaces, we project the images into the subspace
using the projection defined by the eigenvectors ¢1, ¢2, ..., ¢, and compute the
Mahalanobis distance: dy(z,y) = (z — y)7 Sy  (z — y).

3.2 Identix: Facelt

Facelt’s recognition module is based on Local Feature Analysis (LFA) [20]. This
technique attempts to overcome two major problems of PCA. First, the applica-
tion of PCA to a set of images yields a global representation of the image features
that is not robust to variability due to localized changes in the input [21]. Sec-
ond, the PCA representation is non-topographic. In other words, nearby values
in the feature representation do not necessarily correspond to nearby values in
the input image. To address these problems, LFA uses localized image features.
The feature images are then encoded using PCA to obtain a compact descrip-
tion. According to Identix, Facelt is robust against variations in pose variation
of up to 35° in all directions, lighting, skin tone, eye glasses, facial expression,
and hair style.

4 Face De-Identification and Data Utility

4.1 Definitions

For the following we consider all face images i to be vectors of fixed size n with
values between 0 and 255. We will use sets of face images, where we assume that



no two images within the same set come from the same person. In particular we
will refer to the gallery set of face images G, which contains images of known
individuals and the probe set of face images P, which contains images of unknown
subjects. We can then define face recognition as follows:

Definition 1 (Face Recognition). Given a set of probe images P and a set
of gallery images G, the face recognition function fr : P — G associates one face
image of the gallery to every face image in the probe set.

Let Fpg = {fh [, -, f£|flj{ :P—G,j=1,...,n} be aset of face recognition
functions.

Definition 2 (Face Recognition Performance). Let Evaly : [Fp g, P,G] —
[0...1] be an evaluation function which, for given probe and gallery sets P,G
associates a face recognition function fr € Fp g with the fraction of correctly
recognized face images in P.

In this paper we will discuss different face de-identification methods.

Definition 3 (Face De-Identification). Let M, = {my,ma,...,m;} and
Mg = {1y, g, ..., 1} be face images sets. We then define face de-identification
as image transformation fp : Mo — Mg such that fp(m;) = mj;,m; # m;,j =

The implicit goal of a face de-identification method fp is to remove identifying
information from face images, so that Eval¢(fr, fp(P),G) < Evals(fr,P,G).
In Section 5 we will compare Evals(fr, fp(P),G) for different face recognition
functions fr and face de-identification functions fp. k-anonymity provides a
formal model of privacy protection [14]. Newton et al. extended k-anonymity to
face image sets as follows [6]:

Definition 4 (k-Anonymized Face Set). We call a probe set of face images
k-anonymized, if for every probe image there exist at least k images in the gallery
to which the probe image correctly corresponds.

The second focus of this paper is on data utility functions, which assign face
images to one of multiple, mutually exclusive classes.

Definition 5 (Data Utility Function). Let M be a set of face images. We
then define u : M — {c1,ca,...,c,} as data utility function, which associates
each face image in M with exactly one class cj,j =1,... k.

We assume that for each face image 7 the correct class c; is known. Examples of
image classes include facial expressions {neutral, smile}, gender {male, female},
and eye status {open, closed}.

Definition 6 (Data Utility Performance). Let U = {u',u? ... ,u™} be a
set of data utility functions. We define Eval, : [U,M] — [0...1] as evaluation
function which computes the fraction of correct class associations for a given
data utility function u and a face image set M.

In Section 5 we will compare Eval, (v, fp(P)) for different data utility functions
u’ and face de-identification functions fp.
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Fig. 1. Pixelation applied to face images. (a) shows example images of applying pixela-
tion with different p factors. In (b) we plot pixel intensity value across the whole image
at roughly eye height of the original image. The plots for p = 3 and p = 7 illustrate
the subsampling effect of the pixelation operation.

4.2 Naive De-identification Methods

In this section we describe two ad-hoc de-identification methods typically used
in both previous studies [4,5] and the popular press.

Pixelation The process of pixelation reduces the information contained in an
image through subsampling. For a given pixelation factor p, image sub-blocks of
size p X p are extracted and replaced by the average pixel value over the sub-
block. As the value of p increases more information is removed from the image.
See Figure 1(a) for examples of applying pixelation with different factors p to
face images. The subsampling effect of pixelation is further illustrated in Figure
1(b) where we plot the distribution of pixel intensity values across a face for
original and pixelated images.

Blurring To blur an image, each pixel in the image is replaced by a weighted
average of the pixel’s neighborhood. A popular choice for the weighting function
is a Gaussian kernel, which weights pixels near the center of the neighborhood
more heavily. In two-dimensions, for coordiglatfs x and y, the Gaussian blurring
operator is defined as G, (z,y) = 33 e 3t [22]. The standard deviation o
controls the size of the neighborhood. The blurred image is then computed as
convolution of the original image with the Gaussian blurring operator. Figure
2 shows example images of applying blurring with different o values to a face
image. The averaging effect of image blurring is illustrated in Figure 2(b) where
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Fig. 2. Blurring applied to face images. (a) shows example images for multiple levels
of blurring. Similar to Figure 1 we plot pixel intensity values across the face image in
(b). The plot for 0 =9 and o = 25 illustrates how blurring removes information from
the image through averaging.

input : Face set M,, privacy constant k, with |M,| > k
output: De-identified face set Mgy

1 Mg —0

2 for i € M, do

3 if |M,| < k then

a | k=M.

5 end

6 Select the k images {ji,...,jk} € M, that are closest to i according to Lo

norm. .

7 avg «— "‘Tﬂjm

8 Add k copies of avg to Mgy
9 Remove ji,...,jr from M,
10 end

Algorithm 4.1: k-Same algorithm.

we again plot the distribution of pixel intensity values across a face for both
original and blurred images.

4.3 De-identification using k-Same

Here we introduce a new variant of the k-Same algorithm. The k-Same algorithm
was first introduced by Newton et al. in [6]. Intuitively, k-Same works by taking
the average of k face images in a face set and replacing these images with the
average image. A version of the algorithm is described in Figure 10. Image sets
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Fig. 3. Faces de-identified using the k-Same algorithm. (a) shows example images for
different values of k. In contrast to pixelation and blurring the resulting image is still
a face. This is also evident in the pixel distribution plots in (b). While the plots for
k = 3 and k = 7 are different from the original plot they still show characteristics of
the face (two local minima in the position where the pupils are).

input : Face set M,, privacy constant k, |M,| > k, data utility function u
output: De-identified face set My
Mg —10
Let Mo, ..., Mo, C Mo with M,, = {x € Molu(z) = ¢}
Mg, = ksame(Mo,, k),i=1,...,1
Mg = Uf;:1Mdi
Algorithm 4.2: k-Same-Select algorithm.

AW N =

de-identified using the k-Same algorithm are k-anonymized (see [6] for a proof).
Figure 3(a) shows example images of a k-Samed face for different values of k.
In Figure 3(b) we again show the distribution of pixel intensities across original
and k-Samed face images. While the distributions change, overall characteristics
such as the two local minima in the location of the pupils are maintained.

4.4 De-identification using k-Same-Select

One of the shortcomings of the k-Same algorithm is the inability to integrate data
utility functions. Notice that the k-Samed images in Figure 3 appear to change
facial expressions from neutral in the original image to smile in the image for
k = 5. In order to address this problem we propose the k-Same-Select algorithm,
summarized in Figure 4. Intuitively the algorithm partitions the input set of face
images into mutually exclusive subsets using the data utility function and applies
the k-Same algorithm independently to the different subsets. Due to the usage
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Fig. 4. Faces de-identified using the k-Same-Select algorithm with an expression data
utility function. Note that facial expression stays constant across different levels of
k-anonymization unlike in the examples shown in Figure 3.
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Fig. 5. Examples from the FERET database [23] showing a male and a female subject
displaying a neutral and a smile expression.

of the k-Same algorithm, k-Same-Select guarantees that the resulting face set is
k-anonymized.

5 Experiments

5.1 Image Database: FERET

Our experiments are based on images from the recently released color version
of the FERET database [23]. We use images of 833 subjects (474 male, 359 fe-
male), ranging in age from 20 to 70 years old. Experiments involving a gender
data utility function report results on a subset of 584 subjects for which im-
ages showing both neutral and smile expressions are available. See Figure 5 for
example images.

5.2 Face Localization and Registration

For the PCA and gender/expression recognition experiments we use the manu-
ally determined locations of the eyes, the tip of the nose and the center of the
mouth (which are distributed as part of the FERET database) to geometrically



normalize the images for translation and rotation. We furthermore scale the im-
ages to a fixed size of 81x92 pixels. In experiments involving Facelt the original
images of size 512x768 are employed, since Facelt relies on built-in face detection
routines for image normalization and alignment.

5.3 Evaluation of Privacy Protection

Evaluation Sets Following Phillips et al. [23] we distinguish between gallery
and probe images. The gallery contains the images of known individuals against
which the unknown images in the probe sets are matched. All results reported
here are based on non-overlapping gallery and probe sets. We use the closed uni-
verse model for evaluating the performance, meaning that every individual in the
probe set is also present in the gallery. For PCA recognition we randomly choose
20% of the subjects for computation/training of the eigenspace (see Section 3.1).

Results Simulating a potential real world scenario, we evaluate both PCA
and Facelt using the original, unaltered images in the gallery set and images de-
identified by blurring, pixelation, and application of k-same and k-same-select in
the probe set. In the experiments we vary the pixelation parameter p (sub-block
size) between 1 and 21 and the blurring parameter o (variance) between 1 and 37.
PCA results are shown in Figure 6. In the case of both blurring and pixelation,
recognition accuracies stay high (> 90%) for up to 5 levels of de-identification. In
contrast, recognition accuracies for all variants of the k-same and k-same-select
algorithms are below the theoretical maximum of % Recognition accuracies for
Facelt are shown in Figure 7. Unlike PCA, Facelt has not been trained on the
evaluation image set. Recognition accuracies are therefore generally lower for
Facelt than PCA. Nevertheless, the same observations hold. For both blurring
and pixelation higher levels of de-identification have to be choosen in order to
protect privacy.

5.4 Evaluation of Data Utility

Experiment Setup In order to evaluate data utility we set out to perform
two classification tasks: gender and expression classification. For each task we
use a Support Vector Machine classifier with a linear kernel [24]. We partition
the dataset in 5 equally sized subsets, training in turn on four subsets and
testing on the remaining fifth, reporting the average accuracy over the five ex-
periments (5-fold cross-validation). This classification accuracy is our measure of
data utility. Although the de-identification methods measure the intensity of the
de-identification on different scales (e.g. level of blur vs. level of pixelation), for
the purposes of this discussion, we normalize all methods to a common intensity
scale which ranges from 0% to 100% de-identification

Results We evaluate data utility for both gender and expression data on orig-
inal, pixelated, blurred, k-Samed, and k-Same-Selected data, using the same



*
b
b

:

=l Pixelation

3

@
o
=

-

Recognition Accuracy
@
T
o
<

Recognition Accuracy
i
T

@
=
w

oaf : : - H _ : 02 : : : : : 4

o i i i i i i i i a0 i i i i i i i i

1 2 4 5 B 7 8 10 1 2 4 5 B 7 & a 10
De-Identification Level De-ldentification Level
Blurring Pixelation
T S S — — — ——
=¥ K-Same
09k i . K Same-Select-Gender |1
e OO0 T O SO SO SO A <0~ K-Same-Select Expr

- 1k

=2
“

=
=1}

=
I

Fecognition Accuracy
]

2
[

R T T N N R (|
B 7 B 3 10111213 141516 17 18 13 20
K-Level

k-same, k-same-select

Fig. 6. PCA recognition rates for unaltered gallery images and de-identified probe
images. Recognition accuracies stay above 90% for both blurring and pixelation for up
to 5 levels of de-identification. In contrast, recognition accuracies for all variants of the
k-same and k-same-select algorithms are below the theoretical maximum of %

levels of de-identification as described above. Figure 8 shows the results of the
experiments. Data utility decreases for blurring, pixelation, and k-Same, and
increases for k-Same-Select.

6 Discussion

In this section, we discuss several notable findings that emerged from our ex-
periments, as well as some of the limitations and possible extensions to this
research.

Note, in the experiments of the previous section, the notion of utility was
quantified in terms of classification accuracy. Although the de-identification
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Fig. 8. Data utility evaluation. We show accuracties for the gender and expression
classification tasks for images de-identified using blurring, pixelation, k-Same, and k-
Same-Select. Data utility decreases for blurring, pixelation, and k-Same, and increases
for k-Same-Select.

methods measure the intensity of the de-identification on different scales (e.g.
level of blur vs. level of pixelation), for the purposes of this discussion, we nor-
malize all methods to a common intensity scale which ranges from 0% to 100%
de-identification.



6.1 Formal Methods Are Better For Protecting Privacy

In previous studies, it has been claimed that ad hoc de-identification meth-
ods, such as pixelation and blurring prevent humans from reliably recognizing
the identity of images de-identified [4,5,7-9,11]. However, as our experiments
demonstrate, these methods can not prevent a computer from reliably perform-
ing recognition; even at 40% de-identification the PCA algorithm achieves almost
perfect recognition. In Figures 1 and 2, this roughly translates into pixelation
level p = 9 and blur level o = 14. Furthermore, at a de-identification level of 70%
the computer recognition accuracy remains as high as 70%, or 7 correct recogni-
tions out of every 10 probes! This corresponds to pixelation level p = 15 and blur
level o = 25. In contrast, the recognition rate for k-Same and k-Same-Select is
controllable and inversely proportional to k, since both are derivative of the k-
anonymity formal protection model. For example, when k = 2, a de-identification
of 5%, recognition is approximately 50%. Moreover, it can be validated that both
algorithms consistently permit lower recognition rates than the ad hoc methods
(see Figure 6).

6.2 Flexibility of Formal Methods

As the level of de-identification increases, the ad hoc de-identification methods
and k-Same incur a substantial loss in data utility in comparison to k-Same-
Select. For the ad hoc methods, the main reason for this loss is that the specifica-
tions of pixelation and blur are inflexible. They can not be modified to explicitly
account for a notion of data utility during the de-identification process. Similarly,
while k-Same provides provable guarantees regarding privacy protection, for any
protection level k, there is no criteria for utility preservation. However, the k-
Same-Select algorithm provides an ability to preserve data utility. Unlike the
previous de-identification methods, k-Same-Select is a flexible de-identification
method; that is, it can translate any preconceived notion of data utility into
de-identified images that encode that notion.

6.3 The Privacy/Utility Trade-Off

The pixelation, blur, and k-Same face de-identification methods exhibit a trade-
off between privacy protection and data utility. This is because each of these
algorithms de-identify images at the cost of loss of accuracy in the classification
tasks. k-Same-Select overcomes this trade-off by integrating prior knowledge of
the notion of utility. In doing so, k-Same-Select allows for the preservation of
discriminative features during the de-identification process and provides a slight
increase in classification accuracy over the prior methods.

The k-Same-Select algorithm basically functions as a mixture of a de-identifi-
cation algorithm, k-Same, with a simple stratified learning techniques that damp-
ens the sampling variability of the discriminating features. As a result, k-Same-
Select provides an increased potential for data utility preservation in compar-
ison to both k-Same and ad hoc methods. In a real-world implementation of



k-Same-Select, we can make use of semi-supervised learning techniques [25] and
of co-training [26], to learn gender and expression of probe images that are
not excluded from the original probe image set. However, it is unclear whether
k-Same-Select will increase or decrease the data utility in a real-world setting
since stratified sampling techniques tend to help classification, whereas semi-
supervised learning techniques tend to harm it. In future research, we expect
to investigate the degree to which semi-supervised learning can facilitate the
classification process.

We conclude that k-Same-Select is the only known algorithm that poses a
challenge to the trade-off between privacy and utility. In our experiments, it was
able to increase utility for any given level of privacy protection in a controlled
setting. We believe it will be able to maintain the data utility for any given
desired level of privacy protection in the real-world.

6.4 Beyond Preconceived Notions of Utility

In this research, k-Same-Select uses known labels (i.e. gender and expression
classes) during the de-identification process. However, we do not need to know
the actual gender and expression of each image in the probe. This information is
unnecessary because, as stated above, we can reliably estimate such information.
Given an initial probe image set, we can run semi-supervised learning methods
to build classifiers for the prediction of a new image’s class. Thus, in order to
apply k-Same-Select, only a preconceived notion of data utility is needed.

In order for k-Same-Select to be universally applicable, as an off the shelf tool,
we need to make data utility and de-identification operationally independent. We
believe this is possible, and this is the focus of on-going research.

6.5 Conclusions

In this paper, we studied the degree to which ad hoc and formal face de-
identification methods preserve data utility. Two distinct classification problems,
expression and gender prediction, were specified and a sophisticated machine
learning method, in the form or support vector machines, was employed to mea-
sure the classification accuracy of de-identified images. Privacy protection was
measured in the form recognition accuracy against standard academic and state-
of-the-art commercial face recognition systems. Our experiments demonstrate
that formal face de-identification algorithms always dominate ad hoc methods
in terms of providing privacy protection (i.e. incorrect face recognition). Further-
more, we demonstrated that formal de-identification methods can be extended
to explicitly model criteria for utility preservation. As a result, we introduced
a new formal face de-identification method, k-Same-Select, which is superior to
prior de-identification methods in both privacy protection and utility preserva-
tion. The main drawback of our research is a need to specify criteria prior to
de-identification occurs and, as a result, in future research we hope to determine
more a set of more generalized criteria.
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