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ABSTRACT
This paper provides algorithms for learning the identities of
individuals from the trails of seemingly anonymous information
they leave behind. Consider online consumers, who have the IP
addresses of their computers logged at each website visited.
Many falsely believe they cannot be identified. The term “re-
identification” refers to correctly relating seemingly anonymous
data to explicitly identifying information (such as the name or
address) of the person who is the subject of those data. Re-
identification has historically been associated with data released
from a single data holder. This paper extends the concept to “trail
re-identification” in which a person is related to a trail of
seemingly anonymous and homogenous data left across different
locations. The 3 novel algorithms presented in this paper perform
trail re-identifications by exploiting the fact that some locations
also capture explicitly identifying information and subsequently
provide the unidentified data and the identified data as separate
data releases. Intersecting occurrences in these two kinds of data
can reveal identities. For example, an online consumer may visit
50 websites and purchase at 5 and another may visit 30 sites and
purchase at 7. Shared visit logs provide unidentified data.
Exchanged customer lists provide identified data. The algorithms
presented herein re-identify individuals based on the uniqueness
of trails across unidentified and identified datasets. The
algorithms differ in the amount of completeness and multiplicity
assumed in the data. Successful re-identifications are reported for
DNA sequences left by hospital patients and for IP addresses left
by online consumers. These algorithms are extensible to tracking
collocations of people, which is an objective of homeland defense
surveillance.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Distributed
databases; H.2.8 [Database Management]: Database
Applications –Data mining.

General Terms

Keywords
Re-identification Algorithms, Distributed Databases, Homeland
Defense, Security and Privacy

1. INTRODUCTION
As a person progresses through daily life, they leave behind
fragments of information about themselves in all kinds of
disparate databases [9]. Examples include images of the same car
recorded on different highway video cameras; a computer’s IP
address logged at multiple websites; and, a patient’s DNA
sequence appearing in different hospital databases. Much like
fingerprint evidence in an earlier time, tiny pieces of digital
information that are left behind seem innocent and anonymous.
No one expects to easily relate these pieces of data to identities of
people. Perhaps automated re-identification did not seem realistic
before, but this work provides real-time algorithms for learning
identities of people from the patterns of data pieces left across
multiple locations.

Until recently, it was believed that if data looked anonymous, it
was anonymous. Tables, in whicheach row of information
related to a person, were shared somewhat freely provided none of
the columns included explicit identifiers, such as name, address,
or Social Security number. This kind of “de-identified” data can
often be linked to other tables that do include explicit identifiers
(“identified data”) to re-identify people by name. Fields
appearing in both de-identified and identified tables link the two,
thereby relating names to the subjects of the de-identified data.
For example, {date of birth, gender, ZIP}, which commonly
appeared in both de-identified and identified data, uniquely
identified 87% of the U.S. population [10].

As just described, “re-identification” was limited to relating
people to records in a single released table, where the table was
information collected by one data holder. In this work, the notion
of re-identification is extended to “trail re-identification” which
seeks to identify people who visited named locations. In trail re-
identification, each location separately collects and subsequently
shares de-identified data on people who visited the location. The
de-identified data consists of only one or very few fields. A
location may also share explicitly identified data, thereby naming
some people. Recognizing uniquely occurring visit patterns
across both the de-identified and identified datasets provides the
basis for trail re-identification.
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For example, an online consumer visits websites, leaving the IP
address of his computer logged at each site visited. At some sites,
he may also provide explicitly identifying information; for
example, his name and address are provided to complete a
purchase. Separately, these websites may share logs containing
the IP addresses of those who visited their sites. As businesses,
these websites may also share explicitly identified data such as
customer lists, which typically includes the name and address of
those who made purchases. By examining the trails of which IP
addresses appeared at which locations in the de-identified data
and matching those visit patterns to which customers appeared in
the identified customer lists, IP addresses can be related to names
and addresses. These re-identifications can then be used to
identify visits to locations in which the consumer did not make
purchases. Until this work, many people believed these de-
identified logs of IP addresses could not be re-identified.

As a second example, a patient sick with a deterministic genetic
disorder may visit several hospitals. Each hospital records
demographic information, clinical data and a digitally recording
of the patient’s DNA. Later, researchers share de-identified data
consisting of only the DNA sequences collected at hospitals [1].
Many states sell hospital discharge data, which includes
identifiable demographics and clinical information on each patient
[9]. By examining the trails of which DNA sequences appeared at
which hospitals in the de-identified DNA data and matching those
visit patterns to which patients appeared at which hospitals in the
identifiable hospital discharge data, DNA sequences can relate to
names and addresses. Until this work, many people falsely
believed that a DNA sequence could not be re-identified to a
person in the absence of a master DNA registry.

There is ever-increasing demand to learn more about individuals
from data people leave behind. For example, in homeland defense
surveillance, learning which people have appeared at the same
locations during similar time periods is very important. These
kinds of trail re-identification problems represent an important
extension to KDD research. This paper introduces the general
trail re-identification problem and several of its variants. Three
novel algorithms are provided. Results are reported on real-world
datasets. This paper ends with a discussion on the implications of
the trail re-identification problem to privacy and surveillance and
on directions for future work.

2. DATA AND TRAIL DEFINTIONS
This section defines terms. Definitions begin with de-identified
and identified tables. Different ways data can be released and the
different kinds of trails that result are carefully described. The
section ends with a formal definition of the trail re-identification
problem. In the next section then, 3 algorithms that solve variants
of the trail re-identification problem are presented.

The basics elements are derived from relational database theory.
The term “data” refers to information held by a data-collecting
location. The information is organized as a table of rows
(records) and columns (fields). Each row (or “tuple”) is specific
to a person, machine, or other entity that visited the location.
Each column is referred to as an attribute, which contains a
information that refers to people, machines or other entities that
visited the location. A table is defined asττττ(A1, A2,…,Ap), where
the set of attributes for tableττττ is A = { A1, A2,…,Ap}. A tuple t of
the tableττττ is defined ast[a1,…,ap] and represents the sequence of

values, v1∈A1,…,vp∈Ap. The size of the table is simply the
number of tuples and is represented |ττττ|.

A particular data-collecting location releases a two-table vertical
partitioning of its data, such that one table contains explicitly
identified data and the other table is devoid of identified data (de-
identified). The properties of the partitioned release are
formalized in definition 2.1. A sample is provided in Example
2.1.

Definition 2.1 (De-identified and Identified Tables). Given a
tableττττ(A1, A2,…,Ap) maintained by a data-collecting location, the
attributes A- ={ Ai,…,Aj} where Ai,…,Aj ⊆ A1,…,Ap and A+

={ Ax,…,Ay} where Ax,…,Ay ⊆ A1,…,Ap, ττττ- is the de-identified
subtable ofττττ having attributesA-, andττττ+ is the identifiedsubtable
of ττττ having attributesA+ such that:

i) A- ∩ A+ = ∅
ii) A- is devoid of:

a) explicitly identifying attributes; and,
b) attributes linkable to an explicit identifier

iii ) A+ includes:
a) explicitly identifying attributes; or,
b) attributes linkable to an explicit identifier

The third part of Definition 2.1 states that the identified table is
identifiable if it contains any explicitly identifying attributes, such
as name or address, or if it has attributes that can be linked to any
external tables which contain explicitly identifying attributes.

Example 2.1 Figure 1 illustrates released partitions from the
hospital data in Figure 2. Patient demographics are reported in
the identified tableττττ+. DNA sequences are reported in the de-
identified table,ττττ -. The attribute ID is not released. The tuple for
“Fran Booth” (shown in Figure 2) is not released.

ττττ+ ττττ -

Name Birthdate Gender Zip DNA
John Smith 2/18/45 M 15234 acag…t
Mary Doe 4/9/75 F 15097 accg…a
Bob Little 2/26/49 M 15212 cttg…a

Kate Erwin 11/3/54 F 15054 atcg…t

Figure 1. Vertical partitioning by a hospital of its data into an
identified table (ττττ+) of patient demographics and a de-
identified table (ττττ-) containing DNA sequences.

As described in Definition 2.1, a vertical partitioning involves a
pair of functionsVid andVde such thatVid: ττττ→ττττ+ andVde: ττττ→ττττ-.
In compliance with the relational model, the order in which tuples
appear in the de-identified and identified tables is not necessarily
maintained across the tables.

Notice that definition 2.1 does not require all the tuples inττττ to be
contained in the identified table (ττττ+) or in the de-identified table
(ττττ-). Constraints on the relationships between the number and
containment of tuples provided in released tables are discussed in
the next section.

2.1 Ways of Releasing Data
Here are two ways a data-collecting location can specify tuples for
partitioning. The location can include attributes from the same,
and only the same, tuples in both the identified table and the de-
identified table. Alternatively, the location can include attributes
for a subset of tuples in the de-identified table to appear in the
identified table, or vice versa. Precise descriptions of these two
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kinds of releases are provided in this subsection, but first,
assumptions inherent in this work are stated.

Assumption 2.1 (Per Location Release).Each data-collecting
location c releases data that was collected atc and from no
external source.

Assumption 2.2 (Uniqueness of Tuples).In a location’s de-
identified and identified tables, each tuple is unique. Therefore, a
de-identified or identified table represents a set of references to
people, machines, or other entities that have “visited” the location,
but not necessarily the frequency of visits. These references
narrowly relate to a person, machine, household or other entity to
be identified.

Definition 2.2 presents a definition for released data that adheres
to a “representative” property in which only tuples present in the
de-identified table have corresponding tuples in the identified
table, and vice versa. Example 2.2 provides a sample.

Definition 2.2 (Representative) Let the table ττττ be vertically
partitioned byVid and Vde such thatVid: ττττ→ττττ+ and Vde: ττττ→ττττ-,
where ττττ- is the de-identified table, andττττ+ is the identified table.
The tablesττττ- and ττττ+ are representativeif and only if: (1) ∀tid∈ττττ+

and∀tde∈ττττ-, Vid
-1(tid) = Vde

-1(tde); and, (2) |ττττ+| = |ττττ-|. 1

In releases that adhere to the representative property, every tuple
from the data-collecting location present in the de-identified table
is also present in the identified table, and vice versa.

Example 2.2 Figure 1 depicts a representative release resulting
from a representative vertical partitioning of the data in Figure 2
into a de-identified table (ττττ-) and an identified table (ττττ+). Each
released tuple has values in both tables.

Name Birthdate Gender ID Zip DNA
John Smith 2/18/45 M 11 15234 acag…t
Mary Doe 4/9/75 F 18 15097 accg…a
Bob Little 2/26/49 M 2 15212 cttg…a
Kate Erwin 11/3/54 F 21 15054 atcg…t
Fran Booth 1/8/71 F 27 15054 accg…t

Figure 2. Original data collected by a hospital.

Releases that are representative are not always practical. In some
situations, a data-collecting location may not have collected both
identified and de-identified data on all visitors to their location or
may not want to share all collected information. In these cases,
either the de-identified table or the identified table is incomplete,
providing a release that is “appropriate” (Definition 2.3).
Samples are provided in Examples 2.3 and 2.4.

Definition 2.3 (Appropriate) Let the table ττττ be vertically
partitioned byVid and Vde such thatVid: ττττ→ττττ+ and Vde: ττττ→ττττ-,
where ττττ- is the de-identified table, andττττ+ is the identified table.
The tablesττττ- and ττττ+ are appropriate if either (1) ∀tid∈ττττ+, there
exist tde∈ττττ -such thatVid

-1(tid) = Vde
-1(tde); or, (2) ∀tde∈ττττ -, there

exist tid∈ττττ + such thatVid
-1(tid) = Vde

-1(tde). In (1), ττττ+ is the
“appropriate” table toττττ -; and in (2),ττττ - is the “appropriate” table
to ττττ +.

Example 2.3 Consider an online store in which all purchases are
made at the store’s website. An online consumer may visit the

1 V-1 is the inverse function ofV.

store and not necessarily make a purchase; of so, his de-identified
IP address may be collected, but there is no accompanying name
and address due to lack of purchase. The store’s release of all
names of purchasers as the identified table and all logged IP
addresses as the de-identified table is a release that adheres to the
appropriate property.

Example 2.4 Figure 3 depicts a release resulting from an
appropriate vertical partitioning of the data in Figure 2 into a de-
identified table (ττττ-) and an identified table (ττττ+). DNA sequences
for “Bob Little” and “Kate Erwin” appear inττττ-, but there are no
DNA sequences for “John Smith” or “Mary Doe.”

ττττ+ ττττ -

Name Birthdate Gender Zip DNA
John Smith 2/18/45 M 15234 cttg…a
Mary Doe 4/9/75 F 15097 atcg…t
Bob Little 2/26/49 M 15212

Kate Erwin 11/3/54 F 15054
Figure 3. Release by a hospital, with partitioning into an
identified table (ττττ+) of patient demographics and an
appropriate de-identified table (ττττ-) containing DNA sequences.

2.2 Data Trails
Given a set of data-collecting locations, where all locations share
either releases in a representative or an appropriate manner, visits
across locations can be tracked by observing which locations
reported which visits. These observations are made explicit by
constructing a matrix of shared de-identified data and a matrix of
shared identified data. These matrices are termed a de-identified
track and an identified track, respectively, (Definition 2.4).

Definition 2.4 (De-identified and Identified Tracks) Let C be
the set of data-collecting locations that share their identified
tables,ττττc

+, over the attributesA+ and de-identified tables,ττττc
-, over

the attributesA-, wherec∈C. Let B be a vector containing the
members ofC, andT+ be the set of all {ττττc

+} and T - be the set of
all { ττττc

-} for each c∈C. Either: (1)ττττc
+ and ττττc

- are representative;
(2) ττττc

+ is appropriate toττττc
- for eachc∈C; or, (3) ττττc

- is appropriate
to ττττc

+ for eachc∈C. Thede-identified track, N, is a matrix having
|A-| + |C| columns. The contents ofN are the same as those
realized byFillTrack(N, A-, T-). Similarly, the identified track,P,
is a matrix having |A+| + |C| columns and the contents ofP are the
same as those realized byFillTrack(P, A+, T+). The number of
rows inN andP are:

U
||

1

C

c
c

=

−τ and
U

||

1

C

c
c

=

+τ , respectively.

FillTrack(Track T, Attributes A, Tables { ττττc})

Steps:
let each cell in T be initialized to 0
for each location c∈C:

For each tuple ti∈ττττc
let b be the index of c in B
if there does not exist Tj[1,…,|A|] ≡ ti, where j=1,…,|T|
then :

let k be the first unused row in N // has all 0’s
Nk [1,…,|A|] = ti and Nk[|A|+b] = 1

Else : Nj[|A|+b] = 1 // another location found
// Nx[y] is the cell in the x-th row and y-th column ofN
// Nx[a,...,b] is the vector in the x-th row having columns a to b ofN
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A de-identified track (and an identified track) is a large matrix
where each row contains information about a visit and lists the
locations in which that visit was reported. The first group of
columns in the track is the information collected about a subject
on the subject’s visit to a location. The second group of columns
is a list of locations. Values associated with locations are 1 if the
subject visited the location and a 0 otherwise.

In a representative release, the identified track (P) and the de-
identified track (N) are “representative.” If the tables that
constructN are each appropriate to the tables that constituteP,
trackN is “appropriate” toP. Likewise, if the tables that construct
P are each appropriate to the tables that constituteN, track P is
“appropriate” toN. Examples 2.5 and 2.6 provide samples.

Example 2.5 Figure 5 shows the identified track (P) and de-
identified track (N) for the releases found in Figure 4, which
adhere to the representative property.

P N
Name h1 h2 H3 DNA h1 h2 h3

John 1 1 0 acag…t 1 1 0
Mary 1 0 1 accg…a 1 0 1
Bob 0 1 1 cttg…a 0 1 1
Kate 0 0 1 atcg…t 0 0 1

Figure 4. De-identified track (N) and identified track (P).

Example 2.6 Figure 6 shows 3 hospitals performing appropriate
releases in which the de-identified DNA tables are appropriate to
the tables of names. These releases provide the tracks in Figure 7
in which track N, which results from the DNA tables, is
appropriate toP, which results from the tables of names.

In both a de-identified track and an identified track, the rightmost
columns are associated with locations. The vectors of binary
values associated with those columns are “trails.” They show the
locations where the person, machine, or entity that is the subject
of the visits has been. Trails are described in Definition 2.5.

Definition 2.5 (Trail) Let C be the set of data-collecting locations
that share their identified (or de-identified) tables in trackT. The
shared tables are over the attributesA. A trail for subjectj is the
vector Tj[|A|+1,…,|A|+|C|]. For convenience,Tj[|A|+1,…,|A|+|C|].
is written trail (T, j).

A trail for a subject is a vector of binary values where a value of 1
indicates the subject visited the location and 0 otherwise. See
Example 2.7.

Hosp1 (+) Hosp1 (-) Hosp2 (+) Hosp2 (-)
Name DNA Name DNA
John acag…t John acag…t
Mary accg…a Bob cttg…a

Hosp3 (+) Hosp3 (-)
Name DNA
Mary accg…a
Bob cttg…a
Kate atcg…t

Figure 5. Releases by 3 hospitals that adhere to the
representative property.

Example 2.7 Given the identified trackP in Figure 5, [1,1,0] is a
trail for “John” and [0,1,1] is a trail for “Bob”. Given the de-

identified trackN in Figure 5, [1,0,1] is a trail for “accg…a” and
[0,0,1] is a trail for “atcg…t”.

The de-identified and identified tracks in Figure 5 were
constructed from the releases reported in Figure 4. These tracks
adhere to the representative property, and the resulting trails are
“complete trails”. The notion of a complete trail is presented in
Definition 2.6.

Definition 2.6 (Complete Trail) Let C be the set of data-
collecting locations that share their identified (or de-identified)
tables in trackT such that the shared tables from each location
c∈C is representative. Acomplete trail is a trail in T. In a
complete trail, values represent the unambiguous presence or
absence of a subject at a location such that 0 signifies the subject
of the trail did not visit the location and 1 signifies the subject of
the trail definitely visited the location.

If de-identified and identified tracks are constructed from a release
that adheres to the appropriate property, then the trails in the
appropriate track are all “incomplete trails.” Definition 2.7
presents an incomplete trail and samples are provided in Example
2.8.

Definition 2.7 (Incomplete Trail) Let C be the set of data-
collecting locations that share their identified and de-identified
tables in tracksT1 andT2 such thatT1 is the appropriate track ofT2

for all data holdrsc∈C. An incomplete trailis a trail inT1. In an
incomplete trail, a value of 1 represents the definite presence of
the subject at a location and a value of 0 suggests ambiguity. The
subject may or may not have visited the location.

Hosp1 (+) Hosp1 (-) Hosp2 (+) Hosp2 (-)
Name DNA Name DNA
John acag…t John acag…t
Mary Bob cttg…a

Hosp3 (+) Hosp3 (-)
Name DNA
Mary atcg…t
Bob
Kate

Figure 6. Released identified tables (+) and de-identified
tables (-) with the appropriate property.

Example 2.8 In Figure 7 the de-identified trackN has the
following incomplete trails: [0,1,0]; [1,0,0]; [0,1,0]; and [0,0,1].
All the trails in the identified trackP are complete.

P N
Name h1 h2 h3 DNA h1 h2 h3

John 1 1 0 acag…t 0 1 0
Mary 1 0 1 accg…a 1 0 0
Bob 0 1 1 cttg…a 0 1 0
Kate 0 0 1 atcg…t 0 0 1

Figure 7. De-identified track (N) and identified track (P) from
the partitions in Figure 6. P has complete trails. N has
incomplete trails.

An incomplete trail can match ambiguously to several complete
trails. This notion of containment forms the basis for “subtrails“
and “supertrails.” See Definition 2.8 and Example 2.9.

Definition 2.8 (Subtrails / Supertrails) Let C be the set of data-
collecting locations that share their identified and de-identified
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tables in tracksT1 and T2 such thatT1 is appropriate toT2. The
shared tables are over the attributesA. Let x be a trails fromT1

andy be a trail fromT2. x is asubtrail of y (written x ≤ y)andy is
a supertrailof x (written y ≥ x) if and only if: T1[x] [d] ≤ T2 [y][d]
for d=|A|+1,…,|A|+|C|.

Example 2.9 [1,0,0], [0,1,0], and [1,1,0] are subtrails of [1,1,0].
[1,1,0] and [0,1,1] are supertrails of [0,1,0].

With respect to tracks, recall the properties of representative (2.2)
and appropriate (2.3). If tracksN and P are constructed from
representative releases, then for any particular entityx in the
tracks, N[x][d] must equal P[x][d] for all locations d.
Furthermore, ifN and P are constructed from releases that are
appropriate, then for any particular entityx in the tracks,N[x][d]
must be≤ P [x][d] for all locationsd if N is appropriate toP. N
consists of incomplete trails andP consists of complete trails.
The converse is true ifP is appropriate toN.

TracksA andB are one-to-one if for every entityx represented by
a trail in trackA there exists only one trail in trackB that correctly
corresponds tox. TracksA andB are one-to-many if every trail in
A may correctly be linked to one or more trails in trackB.

Now that de-identified and identified tracks are understood and
how complete and incomplete trails relate to these tracks, the trail
re-identification problem can be presented. See Definition 2.9
and Example 2.10.

Definition 2.9 (Trail Re-identification Problem) Let C be the
set of data-collecting locations whose shared tables result in de-
identified trackN and identified trackP over the attributesA- and
A+, respectively. Let there exist a functionf: A→B, whereA∈{ N,
P} and B= { N, P}-{ A}. A trail re-identification results for a
subject s when there exists ani, such that f(As[1,…,|A-|]) =
Bi[1,…,|A+|]. The goal is to determine the proper functionf.

Example 2.10 The de-identified trackN and identified trackP in
Figure 4 result from the hospital releases shown in Figure 5.
f([“acag…t”]) = [“John”], f([“accg…a”]) = [“Mary”], f([“cttg…a”]) =
”Bob”], and f([“atcg…t”]) = [“Kate”] are all correct trail re-
identifications.

This section precisely described how people machines, and other
entities leave information behind at visited locations, how that
information can be shared resulting in trails and how those trails
can pose a trail re-identification problem. In the next section,
three novel algorithms for performing trail re-identifications are
presented. Afterwards, results are reported on real-world data.
The paper ends with discussions on related work and pertinent
issues.

3. REIDIT ALGORITHMS
Given C, the set of data-collecting locations whose shared tables
result in de-identified trackN and identified trackP over the
attributes A- and A+, respectively, algorithms that exploit the
uniqueness of trails inN andP can be written to perform trail re-
identifications. The three algorithms presented in this section are
variants of this approach. Collectively, they are termed Re-
identification of Data in Trails (REIDIT).

3.1 REIDIT-Complete
The first algorithm is named REIDIT-C. It performs exact match
on the trails ofN andP. REIDIT-C assumes that bothN andP are
representative, and therefore, REIDIT-C only works on complete
trails.

For every trail inN, REIDIT-C determines if there exists one and
only one trail inP such that the trails are equal. When there is an
exact and unique match, thentrail (N,n) is re-identified to
explicitly identifying information inP. If trail (N,n) is equal to
trail (P,p), and there exists anothertrail (P,p′) also equal to
trail (N,n), then there is ambiguity and no re-identification can
occur. The formalization of REIDIT-C is provided in Figure 8.

Complexity. First, the outer loop iterates over all of the records
in N, which is |N| iterations. Second, foreach iteration inN, the
algorithm iterates a maximum of |P| times. This provides
O(|N|•|P|) or O(|N|2) because |N|=|P|. This is an artifact of the way
in which the pseudo code is written. Another version could be
written in which each set of trails are sorted and then compared,
resulting inO(|N|log|N|).

Algorithm: REIDIT-C(N, P)

Input: De-identified and Identified Tracks N and P over attributes
A- and A+, respectively, for the same data-collecting locations.
Output: Set of trail re-identifications R
Assumes: 1)N and P are representative, 2) N and P are one-to-
one
Steps:

let R = ∅
for n=1 to |N|

let M = ∅
for p= 1 to |P|

if trail(N,n) ≡ trail(P,p)
M = M ∪ Pp[1,…,|A+|]
s = p

if |M| ≡ 1
R = R ∪ {(Ps[1,…,|A+|], Nn[1,…,|A-|)}

return R
Figure 8. Pseudocode for REIDIT-C.

Theorem 3.1Trail re-identifications from REIDIT-C are correctly
re-identified.

PROOF: First, recall theunderlying assumption of the complete-
release model: tuples of both tablesN and P consist only of
complete trails. Thus, at locationi, a visit from an entity must be
recorded in bothTi

- and Ti
+. Since this holds true for every

location, for eachtrail (N,n), there must exist at minimum one
equivalenttrail (P,p). If there exists more than one equivalent trail
in P for trail (N,n), then multiple trails will be recognized and the
singleton requirement will not be satisfied. No re-identification
will be recorded.■

3.2 REIDIT-Incomplete
The second algorithm is named REIDIT-I. It performs
subtrail/suptertrail matching on the trails ofN and P. REIDIT-I
assumes eitherN is appropriate toP or P is appropriate toN.

When an incomplete trail can be matched to a single complete
trail, a trail re-identification occurs. Unlike REIDIT-C, equality
cannot be used for matching trails. Instead, containment of
subtrails by supertrails is used. For each trail in the track
containing incomplete trails, the set of its supertrails from the
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track containing complete trails are found. If there is only one
supertrail, then a trail re-identification has occurred. The re-
identified trails from N and from P are removed. Processing
continues until no more re-identifications can be made because
one of two conditions is satisfied: either (1)N or P have no more
trails to process; or, (2) there are no re-identifications made in the
current iteration. REIDIT-I appears in Figure 9.

Complexity. Let X beN andY beP. First, the outer loop iterates
over all of the records inN, which is |N| iterations. Second, for
each iteration inN, the algorithm iterates a maximum of |P| times.
Finally, the nested for process continues until no re-identifications
are made during the while loop and the while may iterate a
maximum of |N|. times. This providesO(|N|2•|P|).

Algorithm: REIDIT-I (X, Y)

Input: From de-identified and Identified Tracks N and P over
attributes A- and A+, respectively, for the same data-collecting
locations, X is the appropriate table of N or P and Y is the other
table.
Output: Set of trail re-identifications R
Assumes: 1) X has incomplete trails and Y has complete trails. 2)
X and Y are one-to-one.
Steps

let R = ∅
Do

FoundOne = False
for n=1 to |X|

let M = ∅
for p= 1 to |Y|

if trail(X,n) ≠ [null, …, null]
and trail(Y,p) ≠ [null, …, null]
and trail(X,n) ≤ trail(Y,p)

M = M ∪ Yp[1,…,|A+|]
s = p

If |M| ≡ 1
R = R ∪ {(Ys[1,…,|A+|], Xn[1,…,|A-|)}
Xn[|A-|+1,…,|A-|+|C|] = [null, …, null] // remove
Ys[|A

+|+1,…,|A+|+|C|] = [null, …, null] // remove
FoundOne = True

while X has non-null tuples and FoundOne ≡ false
return R

Figure 9. Pseudocode for REIDIT-I.

Theorem 3.2Trail re-identifications from REIDIT-I are correctly
re-identified.

PROOF: For convenience, assume thatN is appropriate toP. N
has incomplete trails andP has complete trails. From the
definition of incomplete trails, all 1’s are correct, so it must be
true that for an arbitrary trail inN, there must exist a non-null set
of supertrails whose identifying information appears inM (|M|≥1)
for trail (N,n). If |M| is equal to 1, then there exists only one
complete supertrail that could be reconstructed fortrail (N,n)
through the replacement of 0’s with 1’s. Thereforetrail (N,n) is
re-identified inM. In the event when |M| > 1, then the algorithm
can still converge to a correct re-identification as follows. Let |M|
equalk. When a re-identification is made for a trail other than
trail (N,n), then |M| decreases by 1. Because it is already known
that |M| has a minimum of 1, if |M|-1 re-identifications are made
for trails of N, excludingtrail (N,n), each with a member fromM,
then the remaining member ofM must re-identifytrail (N,n). ■

3.3 REIDIT-Multiple
The third algorithm is named REIDIT-M. It allows multiple
references inP to be related to only one reference inN, or vice
versa. For example, multiple individuals in a shared setting, such
as a household, can use the same computer. Online purchasers, in
this case, would have multiple identities related to the same IP
address. The reverse is also possible. One person could use more
than one computer and therefore one reference inP would relate
to multiple references inN. REIDIT-M addresses collocation
issues, such as these.

REIDIT-M assumes eitherN is appropriate toP or P is
appropriate toN.

Unlike REIDIT-I, the REIDIT-M algorithm relaxes the
assumption that there must be one-to-one relationship between
trails. If an incomplete trail is a subtrail of only one supertrail,
then a re-identification occurs via a linkage between these two
trails. Multiple subtrails can map to the same supertrail and
permit a re-identification. REIDIT-M is provided in Figure 10.

Algorithm: REIDIT-M (X, Y)

Input: From de-identified and Identified Tracks N and P over
attributes A- and A+, respectively, for the same data-collecting
locations, X is the appropriate table of N or P and Y is the other
table.
Output: Set of trail re-identifications R
Assumes: 1) X has incomplete trails and Y has complete trails. 2)
X to Y is one-to-many.
Steps

let R = ∅
for n=1 to |X|

let M = ∅
for p= 1 to |Y|

if trails(X,n) ≤ trails(Y,p)
M = M ∪ Yp[1,…,|A+|]
s = p

if |M| ≡ 1
R = R ∪ {(Ys[1,…,|A+|], Xn[1,…,|A-|)}

return R
Figure 10. Pseudocode for REIDIT-M.

Complexity. Let X beN andY beP. First, the outer loop iterates
over all of the records inN, which is |N| iterations. Second, for
each iteration inN, the algorithm iterates a maximum of |P| times.
Thus the algorithm isO(|N|•|P|).

4. THEORETICAL VS. ACTUAL RE-
IDENTIFICATION

Theoretically, for both REIDIT-C and REIDIT-I, the maximum
number of trail re-identifications is dependent on the number of
permutations of a binary string. Given an identified trackP,
containing references to subjects and the locations visited, and a
set of data-collecting locationsC, if |P| ≤ |C|, then the maximum
number of trail re-identifications is bounded by the number of
subjects |P|, which implicates that all trails may be re-identified.
When |P| > |C|, the maximum number of trail re-identifications is
bounded by the number of locations in the exponential manner
2|C|-1. When |P| > 2|C|, it will be impossible to re-identify all trails.
In contrast, for REIDIT-M, the number of re-identifications is
independent of the number of data-collecting locations, because it
is possible for multiple trails inP to be mapped to a single
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unidentified trail. As such, the maximum number of re-
identifications is |P|.

There is evidence that a probabilistic model, such as a
multinomial function over each data-collecting location, can be
used to estimate the likelihood of a particular trail re-
identification [10]. While an exponential number of trails may
be constructed, only a fraction of the trails are ever observed. The
probability of observing a trail is dependent on the number of
subjects at each location. This theory is supported by empirical
evidence from trail re-identifications of DNA sequence trails from
patients with particular genetic disorders [4, 5].

5. RE-IDENTIFICATION EXPERIMENTS
To evaluate the REIDIT algorithms, real-world data sets
corresponding to medical DNA database records and IP address
data were used. Results are reported for each REIDIT algorithm
in this section. The experiments are: REIDIT-C on DNA trails
from patients, REIDIT-C, REIDIT-I, and REIDIT-M on online
consumers, and an examination of REIDIT algorithms on very
large datasets using synthetic data.

5.1 Complete DNA Re-identification
Description of Dataset. The dataset used is publicly available
hospital discharge data from the State of Illinois, covering the
years 1990 through 1997, with approximately 1.3 million hospital
discharges per year [7]. Patient demographics, hospital identity,
and diagnosis codes (including certain gene specific diseases) are
among the attributes stored with each database entry. We make
the assumption that hospitals collect the following two types of
data: general hospital discharge information, which makes up the
identified track P and, when possible, DNA sequences which
constitute the basis for the de-identified trackN.

There are more than 30 diseases with single gene determinants
(i.e. if a person’s gene is so mutated, the person deterministically
gets the disease). For this study, we selected a subset of these to
analyze, including Cystic Fibrosis, Friedreich’s Ataxia,
HeREIDITary Hemmorhagic Telangiectasia, Huntington’s
Disease, Phenylketonuria, Recsum’s Syndrom, Sickle Cell
Anemia, and Tuberous Sclerosis. In earlier work, the construction
of clinical profiles from the hospital discharge data and inferences
to DNA sequence samples was done [4, 5].
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Figure 10. REIDIT-C Identity learning in DNA databases.

For this experiment, we assume that each hospital releases all
patient discharge data, as mandated by state law, and each hospital

releases all records from their DNA databases for research or
clinical evaluation purposes. The attributes released with the de-
identified tables wereA-={ DNA sequence} and the attributes
released with the identified tables wereA+={ date of birth, gender,
zip code} for each hospital location. In previous research [9, 10],
the attributesA+ were demonstrated to be re-identifiable. De-
identified trackN and identified trackP were constructed specific
to each of the 8 diseases. In all cases ofN and P, they were
representative. The number of rows inN (andP) ranged from 4 to
7730, depending on the disease. The number of hospital locations
ranged from 8 to 207. REIDIT-C was used to perform trail re-
identification on the DNA trails. Results are summarized in
Figure 10, with and without the inference of gender from DNA
sequences. We find that there is a power relationship (r2=0.74
without gender,r2=0.8 considering gender) between the average
number patients per hospital and the percentage of the disease
population that can re-identified.

5.2 Complete IP Re-identification
Description of Dataset. The second dataset was compiled by the
Homenet project at Carnegie Mellon University2 [3], who provide
families in the Pittsburgh area with internet service in exchange
for the monitoring and recoding of the families’ online services
and transactions. We used URL access data collected over a two-
month period that included 86 households. We reconstructed
purchase data and weblogs for websites accessed by this
population. 5116 distinct websites and 66,862 distinct pages were
accessed. The URL data was manually labeled as “purchase
made” or “purchase not made” as inferred from the accessed page.
For example, a purchase confirmation URL at Greyhound.com
was labeled as a purchase, while the frontpage of the website was
labeled as not being a purchase. It was determined that purchases
were made at 24 distinct websites, including Amazon.com,
Ticketmaster.com, and Hotwire.com. We make the assumption
that websites collect two types of data: 1)identifying information,
such as name or address on the purchaser at the time of purchase;
and, 2) the IP address of computers visiting their site on each
visit.

In this experiment, two scenarios were explored, trail re-
identifications to online users and trail re-identifications to
households. For re-identifications to online users, the attributes
released with the de-identified tables wereAper

-={ website,
purchaser IP address} and the attributes released with the
identified tables wereAper

+={ website, name, address} for each
targeted website location. De-identified trackNper and identified
track Pper were constructed having 30 rows. The number of
locations was 24.

For re-identifications to computer households, the attributes
released with the de-identified tables wereAhou

-={ website,
household IP address} and the attributes released with the
identified tables wereAhou

+={ website, street address} for each
targeted website location. De-identified trackNhou and identified
track Phou were constructed having 26 rows. The number of
locations was 24.

2 For additional information about the Homenet project, we refer
the reader to http://homenet.andrew.cmu.edu.
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REIDIT-C performed trail re-identifications onNper andPper and
on Nhou andPhou ; they all contain complete trails. There were 30
individuals, which made up 26 households, with purchases at a
total of 24 websites. Of these trails, 16 IP addresses (~62%) were
re-identified to mailing address and 20 (~66%) individuals were
re-identified.

To determine the sensitivity of REIDIT-C to additional
withholdings of certain locations, further analysis was conducted
with respect to the removal of single location. The experiment
was run 24 times, each time leaving out a new location. Trail re-
identifications using REIDIT-C was minimally affected. The
results are shown in Figure 11.

The percent re-identified corresponds to the percent of the
remaining population after a location was removed. The observed
outlier corresponds to a website (Ticketmaster.com) that was
accessed by many purchasers, but played a minimal no role in trail
re-identification. Removal of this website allowed for ~25%
improvement in trail re-identification. This experiment
demonstrates that IP address can be re-identified in some cases,
thereby compromising the geographic privacy of the IP address.

5.3 Incomplete IP Re-identification
Using the dataset described in section 5.2, websites now reported
IP addresses for all visitors to their site, regardless of a purchase
or not.

Again, we explored two scenarios, trail re-identifications to online
users and trail re-identifications to households.

For re-identifications to online users, the attributes released with
the de-identified tables wereAper

-={ website, individual IP
address} and the attributes released with the identified tables
remained Aper

+={ website, name, address} for each targeted
website location. De-identified trackNper had 53 rows and
identified trackPper had 30 rows.Nper has incomplete trails.Pper

has complete trails. The number of locations remained 24.

For re-identifications to computer households, the attributes
released with the de-identified tables wereAhou

-={ website,
household IP address} and the attributes released with the
identified tables remainedAhou

+={ website, street address} for
each targeted website location. De-identified trackNhou had 39
rows and identified trackPhou had 26 rows.Nhou has incomplete

trails. Phou has complete trails. The number of locations remained
24.

Trail re-identification was done through REIDIT-I. For this
experiment, the 24 websites release IP data corresponding to 39
households and 53 individuals. REIDIT-I re-identified 9 IP
addresses (~35%) to households and 15 to individuals (~50%).
Sensitivity of REIDIT-I to single locations was analyzed in the
same “leave one out” manner as performed with the previous
experiment. The results are provided in Figure 11. One location,
Amazon.com, had a significant effect on the ability to re-identify
individuals, in that removal of this location decreased the size of
the considered population and increased the ability to re-identify
IP addresses by ~25%.

5.4 Multiple IP Re-identification
Using the dataset described in section 5.2, we acknowledge that a
household may have multiple users of a particular computer. In
this experiment, each website releases a list of customers who
made a purchase at the website, where the list includes the email
address, not the mailing address of the purchaser. An IP address
of a computer may now relate to multiple email addresses.

The attributes released with the de-identified tables wereA-

={ website, IP address} and the attributes released with the
identified tables wereA+={ website, email address} for each
targeted website location. De-identified trackN had 30 rows and
identified trackP had 23 rows. The number of locations remained
24.

There were 23 households with a single purchasing individual, 2
households with 2 individuals, and 1 household with 3 individuals
(i.e. a total of 30 individuals). REIDIT-M achieved trail re-
identification for all three full households. REIDIT-I, however,
failed to recognize them. In the Homenet dataset, family members
visited common sites, which under REIDIT-I remain ambiguous
at the individual level, but not for REIDIT-M at the household
level. Sensitivity of REIDIT-M to single locations was analyzed
as described before and results are shown in Figure 11.

5.5 Re-identification in Large Datasets
In this section we examine how the REIDIT algorithms scale to
very large populations. To conduct these experiments we
generated synthetic datasets with distributions based on those
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found in the Homenet database; see section 5.2. Trails were
simulated based on the probability that an individual visited a
location. For complete trails the probability a trail positioni
equals 1 is (# visits atloci) / |N|. Incomplete trails were simulated
from complete trails, by flipping 1 to 0 with probability equal to
1-[(# purchasers atloci) / (# visits at loci)]. We considered
increases in the number of locations as a multiplex of the
estimated probabilities, such that we concatenatedx trails to
consider a larger trail. Results for REIDIT-I are provided in
Figure 12 for increasing size datasets. Holding visit and purchase
probabilities constant, the algorithms scale to accommodate very
large populations and numbers of locations. The number of trail
re-identifications in a dataset decreases linear in a log scale of the
size of the population. The slope decreases as the number of
locations increases. For Figure 12, the slopes are approximately -
0.27, -0.20, and -0.8, for 24, 48, and 72 purchasing locations,
respectively, and continue to decrease with increasing numbers of
locations. Similar linear scaling characteristics are found for
REIDIT-C (not shown).

We have introduced a new kind of learning problem called trail
re-identification. The identities of people, machines and other
entities are found from fragments of information they leave across
disparate locations. We introduced three novel algorithms for
performing trail re-identifications based on finding uniqueness in
visit patterns. While trail re-identification is new, other kinds of
re-identification have been researched. The next section contains
a survey of related work on re-identification.
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Figure 12. Scaling of REIDIT-I to changes in increased
populations (in base 10 log scale) and number of locations.

6. RELATED RE-IDENTIFICATION
RESEARCH

There have been several methods applied to the problem of re-
identification. Mainly, the concept has been developed with
respect to three genres: record linkage, data linkage, and pattern
matching with aggregation operations. The techniques of record
linkage were initially introduced by Newcombe [6], Felligi, and
Sunter [2] and have been ushered into the modern statistical era
by the work of Winkler [12]. The problem that record linkage
attempts to solve is how to automate the updating of two lists,A
andB, or the deduplicating of a single list. The process of record
linkage corresponds to building a statistical model to classify pairs
from the product spaceA×B → { M, U, C}, where M is the set of

definite matches,U is the set of definite non-matches, andC is the
set of pairs that need clerical review. The goal is to minimize the
error in the setsM andU, while minimizing the size of C. To do
so, several assumptions are made about the data. First, it is
assumed that there are two files with common variables and that
there is typographical error in the files. Currently, record linkage
methods employ expectation-maximization algorithms for
converging to classifications of record pairs. Initially, the process
was not designed for compromising privacy, but rather to relate
records of an individual for which minor corruption in one or both
of the records has occurred. While the technique does relate the
records of a particular subject, for the most part, record linkage
has not been associated with associating de-identified data to
identified data.

Data linkage differs from record linkage in several fundamental
aspects, most notably the fact that data linkage has been
specifically designed for re-identification purposes. It is the
intension of data linkage to make re-identifications for data
devoid of an explicit identity. In addition, the attributes of the
two files are not required to be the same, but instead it is
concerned with exploiting inferential relations between attributes
of the two files. A combination of the values in the attributes of a
table is utilized to estimate the uniqueness of an entity’s identity
in a known population, beyond that of the considered files [8].
The addition of related attributes allows for an increased
probability of the uniqueness of records, provided the added
attributes can be related to features of the identified population.
Linkage is established through known attributes. When a de-
identified record cannot be uniquely re-identified, the process
ceases for the considered record. It appears that the trail re-
identification problem is most related to data linkage, where it
extends such a procedure into a simultaneous evaluation of a large
number of tables.

The third method of re-identification is based on ordered
weighted aggregation (OWA) operators [11], which are rooted in
the data mining community. While record and data linkage
require that there exist direct inferential relationships between
attributes of two tables, this approach attempts to re-identify when
there are no common attributes. However, the technique requires
several major assumptions. First, there is an assumption that there
exist a large number of common individuals in the two datasets.
Second, there exists an implicit similar structure to information in
the two tables. Third, the datasets consist of numerical data. The
procedure takes a table of records and attempts dimensionality
reduction by converting the data vector V of a record [v1, v2, …,
vn] into a new vector W of several weighted scalars [w1, w2, …,
wm], where m < n and wi is a weighted scalar for thei th

parameterization of the OWA operator. The goal is to create an
ordering of the data using combinations of attributes and the
relationships of the individuals in the dataset on those
combinations. Re-identification is then achieved by matching
records that have similar weighted W vectors. The technique has
been demonstrated to work well for the re-identification of
attributes, where the data vectors are the values of an attribute for
all records. While the claim has been made that this technique
can re-identify individual records in a table, corresponding to
subjects and not attributes, no current research disputing or
proving this claim exists.
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7. CONCLUDING REMARKS AND
FUTURE RESEARCH

The REIDIT algorithms provide deterministic methods for
learning who (by name or explicit identity) has been where. The
methodology involves constructing trails across locations from
small amounts of seemingly anonymous or innocuous evidence
the person has been there. Trails are also constructed on places
where the person has left explicit information of their presence.
Identifying uniqueness and inferences across these two sets of the
trails relates information about where the person has been to who
they are.

Only binary trails were examined in this work. However, one
possible extension of this research is in the design and evaluation
of models that allow for the probabilistic qualification of trail bits.
This qualification would permit an interesting optimization
problem for re-identification, allowing some locations to be
weighted more than others. Future research will also need to
address such issues as error and other kinds of incomplete and
data quality issues.

The REIDIT algorithms are challenging and timely to society.
The American public wants to feel safe and is therefore looking
for protection through various kinds of electronic surveillance
systems. An extension of the REIDIT algorithms can be used to
track when suspicious people tend to travel together or be in the
same places.

The REIDIT algorithms are also important to society because
Americans are seeking more safety without compromising privacy
unnecessarily. Clearly, the REIDIT algorithms exasperate privacy
concerns. The fact that trail re-identification can be done, as
evidenced by the existence of this work, informs society and data
privacy researchers of a real challenge. Currently, there is no
work documenting how particular protection schemas might
thwart the various trail re-identification methods presented herein.
Because trail re-identification is a novel strategy for re-
identification, it provides a new and important direction for future
research in data privacy. The challenge is for some researchers to
attempt to thwart these approaches by improving data privacy
methods, while others try to improve their ability to learn. In this
open and aggressive pursuit on both sides, we as computer
scientists can best inform society and help play a crucial role in
the debates of our time.
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